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ABSTRACT

Game theory and evolutionary programming are used to

model social interactions, and simulate aspects of nature.

Scientists often use the prisoner's dilemma game with Genetic

Algorithms for this purpose. The prisoner's dilemma gives each

player a choice between the move best for both players, if

they can trust each other (cooperation), or the selfish but

safer choice (defection). The combined choices result in a

payoff of utilities to each player. This thesis examines the

effect of varying payoff values on populations of prisoner's

dilemma players. For example, will a selfish player thrive

under certain payoffs? As the saying goes, "every man has his

price." This thesis asks, "if we alter the risks for

selfishness, would the population become more or less

selfish?"

The prisoner's dilemma game is significant because it

readily models conflict in cooperative situations. Scientists

also use it to simulate evolutionary biology.

Altering payoff values for the supergame influences the

success of the individual players. The author found that the

payoff values do affect how the population evolves, if

cooperation evolves at all. How the players interact also

changes the evolution of cooperation. Random interaction

provides a more realistic simulation of several kinds of

natural behavior. Finally, counting the number of cooperative



outputs of the finite state machine proves to be another way

to measure cooperation.



NOMENCLATURE

FSM = Finite State Machine

GA = Genetic Algorithm

PGA = Parallel Genetic Algorithm

PD = Prisoner's Dilemma

IPD = Iterated Prisoner's Dilemma

XPD = Extended Prisoner's Dilemma

C = Cooperate

D = Defect

DC = payoff value for a player that defects against a

cooperator

DD = payoff value for a mutual defection

CC = payoff value for a mutual cooperation

CD = payoff value for a player who cooperates with a

defector
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CHAPTER I: INTRODUCTION

Scientists often use the prisoner's dilemma (PD) game and

the Genetic Algorithm to model and simulate people's actions.

The prisoner's dilemma gives each player a choice between the

move best for both players, if they can trust each other

(cooperation), or the selfish but safer choice (defection).

The combined choices result in a payoff of utilities (points)

to each player. The prisoner's dilemma models conflict

situations well.

In the original prisoner's dilemma, two people are in

prison for a minor crime. A detective suspects that they are

guilty of a much more serious crime, but lacks enough evidence

to convict either of them. He goes to each prisoner privately.

Each prisoner can "fink", where he tells on the other

prisoner. Or, a prisoner can "stonewall", and not say anything

to the detective. If one prisoner tells the detective about

the other prisoner, and the other stonewalls, then the finker

gets a reduced sentence, while the stonewaller gets hung. If

both prisoners fink, then both receive a long prison sentence

(the equivalent of the Defect-Defect outcome). If both

prisoners stonewall (mutual cooperation), then they will only

serve their current sentence. Clearly, both prisoners do well

when they mutually cooperate. But cooperation leaves them

vulnerable for the other prisoner to take advantage of the

situation.

The prisoner's dilemma occurs in life in more subtle
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ways. For example, suppose a woman named Dawn loses her purse.

While looking for it, she finds Bob's wallet. She could take

the wallet to the police, and Bob would get it back. Or she

could take the money and throw the wallet away. To keep things

simple, though hypothetical, Bob happens to find Dawn's purse

on the other side of town. Now he faces the same choice. If he

turns in Dawn's purse, and she takes his money, then she comes

out ahead, while he gets nothing. If both people take the

money, then they at least get a little compensation. If both

turn the items in, then both of them get their money, plus all

of their possessions back, such as identification and family

pictures. Dawn and Bob will both do well if they cooperate,

though each can try to take advantage of the other. Their

situation parallels the prisoner's dilemma game. Previous

studies have found that the best thing to do when faced with

this choice is to defect, to keep the other person from taking

advantage. However, Dawn and Bob live in the same town, and

are likely to run into each other again. Repeating (iterating)

the game adds a new dimension to it. Cooperation emerges as a

better strategy.

Varying payoff values on a population of prisoner's

dilemma players produces a different future population. If Bob

always carries more money than Dawn, then she might become a

rich woman if she always defects every time she gets Bob's

wallet. In game theory, the payoffs to the players need to be

quantified. Instead of Dawn getting her purse back and Bob's
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wallet, she would receive a number of utility points. The

prisoner's dilemma game is thus seen to be non-zero-sum,

because the points Dawn wins does not have to equal what Bob

loses.

Also, the players are not allowed to communicate with

each other. Communication adds a dimension to the game that

goes further into psychology than suits this experiment. The

players know their opponent, though, which allows their past

encounters to affect how they will play. The simple example of

Bob and Dawn shows how two people could be faced with a

prisoner's dilemma situation.

This kind of situation comes up all the time in life,

where one person has the opportunity to take advantage of

another. It also applies when a person can choose between

being selfish or doing what is best for the community. Thus,

scientists model social interactions with the prisoner's

dilemma (PD) game. Figure 1 shows an example payoff matrix,

used extensively in these studies. The payoffs are arranged as

Player 1's payoff, followed by Player 2's payoff.

Player 2

Cooperate Defect

Player 1 Cooperate 3,3 0,5

Defect 5,0 1,1

Figure 1 - Payoffs for the 2 player PD game [Axelrod, 1980]
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By changing payoff values, the results of iterated

prisoner's dilemma (IPD) games produce different rankings of

players. For example, a sports magazine might compile a list

of the 10 best college basketball players. If the three-point

shot were taken away, the magazine would probably want to

change its list. In the prisoner's dilemma context, a player

that always defects (All-D) might do well in a population of

players that always cooperate (All-C) using the payoffs given

in Figure 1. However, would the All-C players do better if the

payoffs changed? Let DC be the payoff for a defector when the

other player cooperates, the exploiter's payoff. CC represents

the payoff to a player for mutual cooperation. DD represents

the payoff to a player for a mutual defection. Finally, let CD

be the "sucker's payoff", the amount given to a player that is

exploited. When changing the payoff values, then values must

satisfy DC > CC > DD > CD in order to remain a prisoner's

dilemma game.

The prisoner's dilemma can also be a three player game,

as Figure 2 illustrates. The author does not work with the

three player case in this thesis, but does refer to it in

later chapters.
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Player 2 ( Column )

C D C D

C 1,1,1 0,3,0 0,0,3 -2,2,2
Player 1
( Row ) D 3,0,0 2,2,-2 2,-2,2 -1,-1,-1

C D
| |
+------ Player 3 ------+

( Box )

Figure 2 - Three player PD payoffs [Rapoport, 1970, page 80]

In this experiment, the author uses a tournament of PD

players to produce rankings of the players, from best to

worst. Finite State Machines (FSMs) represent the Iterated

Prisoner's Dilemma (IPD) players. When these payoff values are

altered, the same FSMs do not necessarily prosper. This thesis

will look at this effect on evolving cooperation.

Random interactions are studied, as a more natural way to

conduct a tournament of the players. Previous simulations have

used a round-robin tournament, where every FSM plays every

other FSM a set number of times. Giving the players "space",

or coordinates relative to other players, also has been shown

to affect the simulation, as the paper by Nowak and May [16]

demonstrates. This experiment allows the players to move about

randomly in a world. When two players meet on the same square,

they play the PD game, after "remembering" the last encounter

with their opponent. After the number of games played by the

entire population exceeds a set average, the Genetic Algorithm
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evolves the population. This method of conducting a tournament

is more realistic than the round-robin approach. The author

ran experiments on other initial populations, and found that

the results were consistent.

Due to the nature of this experiment, relevant computer

science and biological terms will need to be explained before

proceeding.

A. Definitions of Terms

All-C : A prisoner's dilemma player that always
cooperates.

All-D : A prisoner's dilemma player that always defects.

Alleles : The values of genes. "A gene for eye
color...might contain the allele for blue pigmentation or the
allele for brown." [Levy, page 162] A binary gene has an
allele of either 0 or 1.

a priori : Deduced from theory, instead of experience.

Artificial Morality : "Artificial morality is a method
for providing a fundamental justification for moral
constraint." [Danielson, page 19].

Chicken Game : Also called "Hawk/Dove", this game is
similar to the Prisoner's Dilemma, except for the payoff
values. See Figure 3.

Player 2
C D

C 3,3 1,4
Player 1

D 4,1 0,0

Figure 3 - Chicken (also known as Hawk/Dove) Payoff Matrix
[Danielson, page 164]

Chromosome : A structure of genes, like a chain of DNA in
cell biology. Often, this appears as an array of bits.
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Demes : Possibly from "demesne", territory. An autonomous
group in a population. Individuals mate only with members of
their group.

Epistemic : Cognitive.

Evolutionary Stable Strategy : Maynard Smith coined this
term in 1974 to describe phenotypes (for example, PD players)
that resist being invaded by other phenotypes. If a single
All-D player were to suddenly appear in a population of All-C
players, the All-D player would thrive and reproduce. If it
were to suddenly appear in a population of TFT (see definition
later in this listing) players, the All-D player would not
thrive. TFT is an evolutionary stable strategy.

Extended Prisoner's Dilemma (XPD) : A variation of the PD
game, where the second player can react to the first player's
move.

Finite State Machine (FSM) : A type of automata. The FSM
has an initial state, an initial output (move), and an array
of values that contain next state and next output information.

Fitness : Measurement of the success of an individual. A
Genetic Algorithm uses a fitness function to evaluate all
potential solutions, to rate them from best to worst.

Game Theory : Game theory uses mathematics to deal with
cases where the best policy varies. Economists, the military,
control theorists, and social scientists use game theory.

Gene : The basic unit of the chromosome, which holds one
parameter's value.

Genetic Algorithm (GA) : A procedure developed by John
Holland. It views a problem as a fitness function, and mimics
natural evolution to make a solution. Reproduction, Crossover,
and Mutation operators work on a "population" of potential
solutions. The population evolves until it satisfies some
stopping criteria.

Genome : "The entire collection of genes (and hence
chromosomes) possessed by an organism." [Joerg Heitkoetter,
1993]

Genotype : How an individual is composed genetically. The
instructions needed for building an organism.

Hill-climbing : "Hill climbing is named for the strategy
that might be used by an eager, but blind mountain climber: go
uphill along the steepest possible path until you can go no
farther" [Luger and Stubblefield, 1993]. Look at the children
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of the current search-tree node, and select the best one to
expand. This process continues until the children of the
current node are no better than the node itself.

Iterated : The case where a game is played repeatedly.
Technically, game theorists call an iterated game a super-
game. Iterated prisoner's dilemma (IPD) is commonly studied
for repeat behaviors.

Panmictic : A population where an individual can
potentially mate with any other member, regardless of
subdivisions. See also demes.

Phenotype : The organism itself. "The informational basis
of the organism is known as the genotype. The expression of
those genes results in a physical organism known as the
phenotype." [Levy, page 161]

Prisoner's Dilemma (PD) : A non-zero-sum, non-
communication game that is commonly played with two players.
The players can either cooperate or defect.

Schema (plural schemata) : A template that describes gene
values. It includes wildcard states, marked by *'s, that
function as place-holders. For example, the schema *01*
describes 1010, 1011, 0010 and 0011, but not 0110. The number
of wildcards is also called the order of the schema. Holland
explained the way a GA acts with schemata theory. "A schema
describes sets of chromosomes that have similarities at
defined bit positions." [Galletly, page 27]

Stackelberg Game : A game where each player moves in
order, with certain information available, specified by the
particular game. Player 1 might be a company, which "moves" by
setting a production level. Player 2, another company, would
observe player 1's output level before making its move.

Sociobiology : "Sociobiology is a specific application of
Darwinian theory to animal behavior..." [Danielson, page 40].

Super-game : see iterated.

Tit-For-Tat (TFT) : A strategy developed by Anatol
Rapoport. This strategy won two IPD contests held by Robert
Axelrod. It cooperates on its first move. After that, it
simply repeats its opponent's last move.

Utilities (Utils) : Utility points of a game. They can be
thought of as "dollars", something of equal value to both
players. The importance is the difference in utils that each
player receives.

8



B. Objective of this Thesis

This thesis will answer the following two questions. Does

the payoff matrix affect how quickly the players reach

cooperation, if they do reach it? Does a mobile population,

where players interact randomly, affect the evolution of

cooperation, as compared to a round-robin tournament? This

thesis explores these questions by a series of simulations.

The simulation modules will verify previous experiments,

demonstrate the effects of space on the prisoner's dilemma

players, provide PD payoff values that give unexpected

results, and examine how these payoff values affect evolving

cooperation. The computations generated by the simulations are

interesting from a computer science point of view. Examining

the PD game gives insight into the nature of complexities.

Lessons learned apply not only to game theory, but also to

human behavior. The author's contributes to the study of the

iterated prisoner's dilemma by looking at a new type of

tournament, where the players move randomly. The assumptions

of this experiment follow.

C. Assumptions

The 2 player IPD games will be considered. Any payoff
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matrix that violates the relative positions DC > CC > DD > CD

will be rejected. The payoff values will be integers with a

range of 0 to 255. The payoff matrix values will be the same

for each player. For example, if both players defect, then

both will receive the same score. The experiment will be done

with a set of FSMs, each representing a player. The program

initializes the FSMs randomly, but the initial population will

be the same for every run of the "Wandering Players" program,

due to the pseudo-random number generator. Thus, the same

initial population produces different results, depending only

on the payoff values. The players are not allowed to "know"

the number of games to be played, so no end-game strategies

are possible. As far as the players know, the game will repeat

indefinitely. The players will be able to "remember" previous

encounters with other players, by storing an array of states

and outputs. During the reproduction and crossover phase of

"Wandering Players", any player will be able to mate with any

other player, depending only on fitness.

Allowing negative values for the payoff values might

affect human players psychologically. Relative aspects would

be the same, however. This thesis does not examine negative

payoff values. The programs used for this study, though, do

not prohibit the user from using negative values.

Previous studies have found that an increased population

size does not yield better (or worse) results. [Fogel, 1993]

The author found that Genetic Algorithm researchers prefer a

10



minimum population size between 20 and 50 individuals,

depending on the problem. A population size smaller than 50

should produce consistent results, and could be used in future

studies to make a quicker experiment. However, this experiment

uses 50 individuals. The author chose 500 as the number of

generations after some initial tests. The average score of the

populations tended to level off by 250 generations, if not

earlier. The author extended the experiments another 250

generations, in order to make sure that the averages had

reached a plateau. The author acknowledges the possibility

that the average scores could change later if the experiment

were to run indefinitely. The populations that did not reach

mutual cooperation after 500 generations could possibly do so

in future generations.
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CHAPTER II: LITERATURE REVIEW

The literature review covers the following topics.

A) Evolving IPD players,
B) The prisoner's dilemma used to study morality

and rationality,
C) Evolutionary programming and Genetic Algorithms,
D) Genetic Algorithms and IPD players,
E) The parallel Genetic Algorithm and Darwin's

continental cycle,
F) Cellular automata and the prisoner's dilemma,
G) The validity of cellular automata experiments,
H) Payoff values and their effect on evolving players.

Each topic is explained in detail in the sections below.

A. Evolving IPD players

Axelrod gathered 14 PD playing programs from experts in

differing fields, and had the programs play each other [1]. A

fifteenth player, Random, who cooperated stochastically about

half the time, also played. This was done to find out how to

play the game well. Axelrod notes that a program's

effectiveness depends on the other programs' strategies as

well. The history of the game must also be taken into account

for the programs to be successful.

All 15 programs played every other program, including a

copy of themselves. There were 200 moves per game. The payoff

matrix appears in Figure 1. If both players cooperated with

each other every time, they would get 600 points. The average

scores for the 15 programs ranged from 276 (Random) to 504
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(Tit-for-Tat).

Tit-for-Tat was submitted by Anatol Rapoport, the author

of "Two Person Game Theory" [20]. Tit-for-Tat simply

cooperates on the first move, then copies the last move of the

opponent. Many of the entries were variations of this idea,

though they did not do as well. Some programs took advantage

of the fact that they knew when the game was going to end, and

altered tactics in the end-game. However, this did not account

for much improvement. Axelrod noted this and changed the

number of games played in the second tournament.

The programs fell into two groups. Axelrod [1] attributes

the placement in each group with whether or not the program

was "nice". He defines nice as meaning the program will not be

the first to defect, at least before the end-game. All of the

top eight entries were nice programs.

To play well against the Random entry, its opponent must

give up on it early in the game. However, this presents a

paradox, since the programs that tended to do well against

Random did not necessarily do well with other programs.

Axelrod defines "forgiveness" as the likelihood of cooperating

after the opponent defects. Tit-for-Tat will defect once after

an opponent defects, but only once. Other programs would try

to teach the defector a lesson. Axelrod notes that the

programs that were not nice tended to be unforgiving as well,

and this lead to bad performance. Axelrod concludes that a

program must be nice and "relatively forgiving" in order to be

13



effective.

Tit-for-Tat demonstrated that reciprocity is a very good

rule for the individual. Many programs that were variations of

Tit-for-Tat did not take echoes of defections into account.

This is important to look at "in an environment of mutual

power". Niceness was a pleasant surprise to find as a rule

which characterized the successful programs. Forgiveness

played a part in keeping the opponents defections from

echoing, and thereby improving the effectiveness. Some players

served as "king-makers", affecting the rankings of the top

players. The performance of a program was decided not only on

its own strategy, but also by the other programs in its

environment.

In order to better understand how to effectively play the

iterated Prisoner's Dilemma game, Axelrod held a second round

of competition between programs. This time, there were 62

entries, including a Random program. Each program was paired

with every other program, including a copy of itself. The

games were played an uncertain number of times in this second

round, to keep the programs from using an end-game strategy.

The score for cooperation by both sides throughout the game

equals 453.

Axelrod defines tournament approach as "each player is

trying to do well for himself and each player knows in advance

that the other players are intelligent and are also trying to

do well for themselves." [2] This second round promised to be
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much more sophisticated, since each person entering a program

had the results of the first tournament. Some people entered

programs based on the improvements that Axelrod noted at the

end of the first tournament. Once again, Tit-For-Tat was

submitted by Anatol Rapoport, and won first place. Many of the

entries were variations of this idea, like the first round,

but could not do better. Axelrod notes that no personal

attribute of the contestants, such as nationality or

programming language used, had anything to do with the

performance of their program. The two properties of "niceness"

and "forgiveness", established in the first tournament,

accounted for how well programs did in the second round.

Axelrod examined the results in comparison to 5 of the 63

programs. These 5 representative programs accounted for 96% of

the variance of the tournament scores. Thus, these 5 could be

used to predict the fitness of a new program, if it were

introduced into the population.

There was only one program in the top 15 which was not

nice. A third generalization of the successful programs

emerged in this round. "Provocability" is the trait where a

program responds to an "uncalled for" defection by the

opponent program. "Uncalled for" is loosely defined as a

defection where the opponent is trying to take advantage of an

easy-going player. The lack of this trait led to the downfall

of Tit-For-Two-Tats. Another program could (and did) exploit

Tit-For-Two-Tats by defecting every other turn. Since two
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defections in a row would not happen, Tit-For-Two-Tats would

not be provoked out of cooperating. Axelrod examined the

robustness of the entries. Robustness is how good a rule rates

in different environments. Tit-For-Tat still won 5 out of 6 of

simulated tournaments, showing that it is very robust.

Axelrod looks at the tournament from an ecological

aspect, leading to a genetic-algorithm-like process. He

compares the rules to animals that interact with each other by

cooperating or defecting. The average payoff would be an

indication of the success of the animal in reproducing for the

next round. The top ranking rules would become a bigger part

of the population of animals in the next round. The average

score would be weighted according to the relative success of

other animals. The expected payoffs between the animal types

is already determined, so the animal's future success can be

easily simulated. The good animals become more numerous, while

the bad animals eventually take on an insignificant percentage

of the population. This survival-of-the-fittest simulation is

not a Genetic Algorithm because the animals do not change,

only the amount of them changes. Thus, no new animal types

evolve. Success demands that the animal types perform well

with other successful animal types. Axelrod found that most of

the successful round 2 rules also did well in a survival-of-

the-fittest simulation. Tit-For-Tat stayed the best, and was

still growing by 0.05% per generation at the end of 1000

generations.
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The final question is whether Tit-For-Tat is the best

Prisoner's Dilemma rule, or just the best one seen in this

experiment. The author cites three reasons why Tit-For-Tat may

not be the ultimate Prisoner's Dilemma rule. First, if the

Random program could be identified by another rule, this rule

could outscore Tit-For-Tat. When TFT and Random play, both do

poorly. A program that always defects against Random, yet

plays like TFT with the other programs, would beat TFT. Rules

have tried ways of identifying the Random player, but not with

much success. Second, he notes that Tit-For-Tat would have

come in fourth if only the top 31 rules had been entered.

Third, environment always plays a role in determining the best

rule. Tit-For-Tat is robust, though, and no rule can exploit

it. The properties of niceness, forgiveness, and provocability

are all parts of Tit-For-Tat that make it robust.

Next, Axelrod looked to evolve good iterated prisoner's

dilemma (IPD) players [3]. Though cooperating players of the

IPD do well, if one were to change to a defector, it would do

better. Axelrod defines an iterated prisoner's dilemma as one

where the individual recognizes other players, and remembers

some of their previous plays. A strategy is defined as a rule

deciding whether or not to cooperate based on the past. The

Genetic Algorithm evolves the strategies.

The Genetic Algorithm (GA) was invented by John Holland.

It is a subset of artificial intelligence. In the GA, the

strategies are represented by a string of numbers called a
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chromosome. Changing the chromosome alters the strategy. The

chromosome consists of the initial history of three previous

plays, followed by the play to make for each of 64 possible

past histories. The two-player outcome makes up each history.

The total number of C or D's represented by this chromosome is

70 genes, also called loci. There are 1.2 * 1021 strategies

that can be represented this way, a number much too large to

try every one. The Genetic Algorithm provides a quick way to

search this space for good strategies.

The Genetic Algorithm for this type of simulation has 5

steps. First, a population of chromosomes is initialized,

often randomly. Second, each individual, represented by the

chromosome, plays the iterated prisoner's dilemma with other

individuals. The average score from the tournament is the

individual's fitness. A more generalized GA would have a

fitness function in the place of this tournament. Third, the

individuals with above average fitness values are selected for

reproduction. Fourth, the selected individuals pair with a

random partner, and produce two offspring. Crossover and

mutation occur during the mating of individuals in this step.

Finally, the offspring replace the parents, keeping population

size constant.

Specifically for Axelrod's simulation, 20 individuals

comprised the population. Crossover occurs about once for

every chromosome. A mutation happens about once every other

chromosome. The players move 151 times during the game.
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Instead of the individuals playing each other, they played

against 8 representative strategies from Axelrod's earlier

tournament [2]. 50 generations made up a single run, and the

experiment carried out 40 runs.

Five behaviors emerged that gave some individuals an edge:

1 Don't defect if the last three plays are mutual
cooperations.

2 If the other player suddenly defects, then defect too.
3 If the other player "apologizes" by cooperating again,

then cooperate as well.
4 Continue to cooperate in the above case.
5 Continue to defect if the last three plays are mutual

defections.

These behaviors are like the Tit-For-Tat strategy, and

the individuals displaying these performed about as well as

Tit-For-Tat. The test strategy called "Adjuster" changes its

defection rate in order to exploit other players, and

succeeded 95% in exploiting the rules displaying these

behaviors. Adjuster also exploits Tit-For-Tat.

Other strategies evolved that were able to do better than

Tit-For-Tat. These discriminated among the other players, and

exploited them when possible. They were able to exploit the

vulnerable players without making enough mistakes to lower

their score. They were not "nice", breaking the rule that

Axelrod established in his first tournament [1]. They would

start by defecting, but would "apologize" to gain mutual

cooperation with the non-vulnerable players. Though they did

better than Tit-For-Tat about 25% of the time, Axelrod quickly
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points out that they are not robust, and would not be able to

pull this off in other environments. He notes that the GA

evolves specialists in specific environments.

Axelrod concludes with a few points about Genetic

Algorithms. First, the Genetic Algorithm searches large spaces

efficiently. Second, the search process is helped by sexual

(two parent) reproduction. Third, he found that convergence

can happen arbitrarily. For example, an ineffective gene can

ride the coat-tails of an effective gene, and become

prevalent. Also, he noticed that the initial play and initial

state of the chromosomes rapidly become fixed, though these

initial values do not seem to matter. Fourth, flexibility and

specialization have a reciprocal relationship, though both are

valued. A specialized individual might score highly. Giving

the individual many offsprings would produce more successful

individuals, but the variety of the population would suffer.

This variety might be necessary in the long run.

Simulating nature in experiments like this leave a lot to

be desired. The simulations of today are highly abstract, with

small populations and few generations. The reproductive

process is very simplified, with no actual sexes, and two

children are usually produced. Despite these shortcomings,

complex strategies can be evolved. This gives us a glimpse of

what the future might have to offer. Evolution can be "played

with", as a design problem. With the advances that

microbiologists are making, we should be able to simulate
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genetic systems to answer our questions.

B. Prisoner's Dilemma used to Study Morality and Rationality

Danielson [5] examines the subjects of morality and

rationality. He defines morality as the choice good for

society, whereas rationality is what's good for the

individual. Are these two fundamentally opposed? He looks at

three problems, each like the prisoner's dilemma. First, the

commuting problem gives each individual a choice between

traveling on the bus (public transportation) and taking a

private car. Second, the greenhouse problem consists of

burning more or less fuel. Third, the hacker's dilemma

presents the case of a person proficient with computers. Does

he use his knowledge beneficially to all, like producing a

shareware tool, or does he do whatever makes him happy, such

as the person who created the Internet worm? Artificial

Morality is morality derived from rationality.

Games make good models for this problem. The Extended

Prisoner's Dilemma (XPD) varies from the prisoner's dilemma in

that the second player has the opportunity to react to the

first player's move. This represents a social contract,

otherwise called the compliance problem. Danielson gives an
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example of two farmers, one who plans to move. If the farmers

agree that both will harvest farmer 1's crops this week, and

farmer 2's crops next week, then should farmer 1 help farmer

2? Since one farmer will leave after the harvest, the sucker

farmer will not be able to reciprocate (as in the iterated

case). Games are used, but not necessarily game theory.

Danielson does not assume that both players have common

knowledge of subjective information. Game theory, he points

out, assumes that both player are rational, which adds a

psychological element to the players. For further discussion

of the notion of rationality as used in game theory, the

reader is referred to Rapoport. One cannot assume that people

think through every decision. He goes on to separate

preferences and interests. Though a person would prefer to

stay warm, she will be interested in going outside into the

cold to get food. Humans have levels of needs that depend on

the environment, and complicate their behavior.

Sociobiology has been used to show kin and reciprocal

altruism, but cannot explain restraint. "Sociobiology is a

specific application of Darwinian theory to animal

behavior..." [Danielson, page 40]. Agents (organisms) who

recognize others in their environment, and who are likely to

interact with these agents in the future, can be modeled with

the iterated prisoner's dilemma (IPD) game. For example,

predators have been observed to seldom fight each other. The

IPD game reveals that they gain no advantage in the long run
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by fighting other predators. Danielson claims the IPD strategy

Tit-For-Tat is a maximizing strategy which gives the best

outcome. Therefore, Tit-For-Tat is not moral, and shows that

an IPD player does not need moral constraint to succeed. Also,

some social situations are not modeled well by the IPD

[Danielson, page 50]. As a result, Danielson eliminates

iteration from his work.

Danielson introduces XPD players, ones that are flexible,

and ones that learn. A coordination problem exists when two

players, who do not have matching principles, fail to co-

operate with each other. A strategy adapts by changing its

principles, which can lead to the above problem. Learning can

be risky, especially in conflict situations, such as a chess

game. An opponent may intentionally mislead. Danielson's game

players are not in a totally friendly environment, but are

also not in pure conflict. Thus, he deems learning as

beneficial to his players. One learning strategy he calls

Copycoop, which tends to adopt the principles of other

strategies that have co-operated with it. Learning lets the

strategies get around the coordination problem. Also, the

learners can adopt moral goals. Finally, the learners provide

a good population to conduct a tournament, where the initial

strategies can improve themselves.

The moral agents (players) exchange information with

other players. Each player makes its principles known, and

responds to the principles of the other players. The author
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studies the importance of information exchange between

players, and the costs to the players of making their

principles known. Some straightforward maximizers (SM's, such

as Tit-For-Tat) use the public information to cooperate with

constrained players. Thus, it is possible for a non-moral

player to do well in the XPD game. Also, co-operation can

exist in this game without mutual constraint. Because of the

costs of information exchange, it pays for the players to be

moral to different degrees. For the two player XPD game,

Danielson finds reciprocal cooperators to do the best. He

argues that this strategy exhibits rationality and morality,

thus solving the compliance problem.

The game of Chicken might provide a better model for

artificial morality. Other people call Chicken the Hawk/Dove

game. Please see Figure 3, in the Definitions section. It

differs from the prisoner's dilemma because both players

suffer most when both defect. To reinforce his conclusions,

Danielson looks at the Chicken game. He claims that the

Chicken game makes a good model because of its aggressiveness.

Each player has the choice to concede to the threatener (the

rational choice), or to resist the threat (the moral choice).

The conceding choice is abbreviated "C", and the resisting

choice is abbreviated by "D". It costs a player more to resist

than to concede. Since a player can get a "free ride", this

game better approximates social interactions. Once again, the

author examines the extended version of the game, where the
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second player can react to the first player's choice.

Danielson develops several new strategies to play this

game. The rational strategy, he points out, is the Less

Broadly Cooperator (LBC). It has the properties of

discriminating in the concessions, and resists threats of

amoral players (straightforward maximizers). Therefore, the

LBC strategy is both rational and moral to a point.

The book ends by arguing for the validity of this study.

Although this model may be too simple to apply to people, it

can apply to organizations. The moral players have roots in

straightforward maximizers, and can revert back to a SM if

they are not performing well. Therefore, the moral players do

just as well, if not better than, the strategic players.

Danielson demonstrates that the XPD and the extended Chicken

games simulate natural interactions well.

Similar to the XPD game, Shinkai [10] looks at an

oligopolistic market with random demand to see if a three-

person Stackelberg game has reduced advantages for the first

two players. Stackelberg games often model business firms. The

two-player case shows that it is more profitable for the first

player to tell the second player his private information than

to let the second player guess at it. The three player case,

however, shows no gain for the first player to form such a

coalition. Under some conditions, the second player ends up

with the least amount of profit. Assuming equilibrium, the

second player has an incentive to share his
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information with the third player. Player 1 does not have an

incentive, so a coalition about private information will not

be formed. For the two-player case, both players do better to

cooperate. In the Stackelberg game, revealing private

information can be thought of as the cooperating choice.

C. Evolutionary Programming and Genetic Algorithms

Andersen et al [8] apply evolutionary programming (EP) to

successfully minimize the objective function of a system

identification model. EP works for Single-Input-Single-Output

(SISO) systems, and Andersen shows that it works for Single-

Input-Multi-Output (SIMO) systems also. Evolutionary

Programming uses evolution to search for a multi-parameter

solution. Note that EP does not use crossover like the Genetic

Algorithm. The EP algorithm appears below.

1. An initial population is created.
2. Find the fitness of every individual.
3. Each individual gets mutated, where the more

successful individuals are less likely to mutate.
4. Find the fitness of every individual, again.
5. Have the individuals compete amongst each other.
6. Rank the individuals, based on the competition.
7. Using only the high ranked individuals, Goto step 3.

Figure 4 - Evolutionary Programming Algorithm [17]

The algorithm applies to the SIMO system by finding the

system matrix, and the input matrix. Andersen examined two

mutation strategies. The first mutated according to the

fitness value, as described above. The second method mutated
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according to the iteration number, and performance improved.

The objective function takes noise into account, and

determines the cost linked to each parameter. The costs are

dimensionless, and are based on the confidence. A noise-free

parameter will contribute largely to the cost.

Andersen experimented with a critically damped second-

order spring system. The system identification took about 300

iterations. When the order of a linear SIMO system is known,

EP can identify the system's parameters. MIMO systems will be

identified in the near future. Andersen's experiment was not

conclusive, for a few reasons. The model did not take process

noise into account. Also, the order of the system must be

known. Despite these shortcomings, EP promises to become a

powerful tool for solving adaptive control systems.

Both EP and GAs are subsets of artificial intelligence.

Thus, the GA is a powerful tool for solving widely varied

problems, like its cousin, evolutionary programming. Homaifar

et al [4] list the following differences between Genetic

Algorithms (GAs) and more standard search techniques. First,

GAs need a set of parameters to be optimized. These are

represented as a string. Second, a population of strings is

used at the same time, so solutions develop in parallel.

Third, instead of using deterministic rules, GAs depend on

probability to guide the search. Finally, GAs evaluate each

string with a fitness function. An initial population is
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generated randomly, and the GA operators evolve the population

until the fitness function detects a solution.

The operators of a Genetic Algorithm are reproduction,

crossover, and mutation. Reproduction is similar to a

"roulette wheel", where the strings that have the better

fitness values also have the better chances of reproduction.

Order-based crossover takes parts from each of two parents,

and creates two new strings from re-combining these parts.

Order-based mutation selects one gene at random, and switches

the bit value. A Genetic Algorithm can have other forms of

operators, but they are outside the scope of this thesis.

D. Genetic Algorithms and IPD Players

Stanley et al [9] use the Iterated Prisoner's Dilemma

(IPD), where player's scores are accumulated. The number of

possible players is fixed, but the players can play many

different other players during an iteration. The only

information that the players have about other players is the

history of payoffs from games with that player. The payoffs

for this experiment are the same as in Figure 1. During each

iteration, each player can choose which of the other players

are tolerable game players. When the expected payoff for

playing an opponent falls below the tolerance level, then the

player refuses to play the opponent.
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Each iteration has the following stages:

1) Choice stage. Each player offers to play up to K
others.

2) Refusal stage. For every received offer, reject the
ones where the expected payoff is too low.

3) Play stage. Play out the PD games.
4) Cleanup. Calculate payoffs for everyone.
5) Update. Update expected payoffs.

Players are represented by automata. There are six types

studied by Stanley et al:

1) Always Defect (AllD)
2) Ripoff-Artist (Rip)
3) Gentle Ripoff (GRip)
4) Tit-For-Tat (TFT)
5) Tit-For-2-Tats (TFTT)
6) Always cooperate (AllC)

Whether a player chooses to cooperate or defect depends

on its state. States are changed according to the opponents

last move. After each tournament, the automata are replaced

with a new population. The worst are discarded, and the rest

are retained for reproduction (and crossover). Bit values

describe each finite state machine (FSM). There are 16

possible states, requiring 4 bits (0000 to 1111) to represent.

The first bit is the initial move (Cooperate of Defect). The

next 32 * 4 bits are arrows, pointing to the next state.

Finally, 32 additional bits are needed to label the arrows.

The experimenters found that including choice/refusal in

the IPD supergame results in new features of evolved players.

Choice and refusal brings mutual cooperation into evolved

populations earlier than IPD supergames without it. The player
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All-D eventually becomes intolerable to All-C players.

Strategies also shun All-D, Rip, and GRip, depending on their

tolerance and memory. Payoff bands emerge, where a group makes

stable average payoffs, despite the fact that the members are

diverse. Choice and refusal allows a broad range of new

interactions among players.

E. The Parallel Genetic Algorithm and Darwin's Continental

Cycle

Darwin's continental cycle theory says that production of

new forms of life is most likely to happen on a broken-up

large continent. This theory about the population structure on

evolution is examined in Mühlenbein's paper, using a parallel

Genetic Algorithm (PGA), and the Prisoner's Dilemma.

Darwin said, "I conclude that a large continental area,

which will probably undergo many oscillations of level, and

which consequently will exist for long periods in a broken

condition, will be the most favorable for the production of

many new forms of life, likely to endure long and spread

widely." [12] In order to avoid over-specialization, and yet

allow new life forms to emerge, Darwin imagined a situation

where a large continent breaks up into small islands, then re-

combines to form a continent again. He saw evolution as a

result of the way a group of organisms was put together,

instead of an individual property.

30



Reproduction, selection, and variance are the three

mechanisms of evolution, and simulating evolution on a

computer is not a new idea. John von Neumann invented automata

theory and was able to make an automaton that could reproduce

itself [18]. Though von Neumann did not go on to include the

other two evolution mechanisms in his theory of automata, the

Genetic Algorithm does take them into account. Mühlenbein

decides to use a parallel Genetic Algorithm for a variety of

reasons. One reason is that they run with maximal efficiency

on parallel computers.

There are a few differences between a PGA and a GA.

First, a PGA has a spatially structured population. Second,

the individuals choose their mates. Third, the parent is

replaced by the child. Finally, the individuals can improve

their fitness. Mühlenbein argues that the PGA is more

realistic when it models natural evolution. Many mathematical

models simply ignore the idea that an individual would take up

space.

A spatial population structure is accepted by biological

researchers to have more variety than a panmictic one, where

any two members can mate. "It is a well-known fact that the GA

suffers from the problem of premature convergence", says

Mühlenbein [p 463]. Many GA's implement diversification by

rejecting offspring that are not sufficiently different from

the rest of the population. Mühlenbein's PGA diversifies the

population via the spatial structure. An individual's fitness
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is determined by its neighborhood. It chooses a mate from

within that neighborhood as well. This PGA stays with the

biological paradigm.

Two models are examined. One is the isolation-by-

distance model, where individuals have a finite home range.

The other is the stepping-stone model, where individuals can

migrate between adjacent islands only. Higher fitness peaks

are found when migrants mate with individuals in the foreign

population. Mühlenbein credits the static fitness function

with the success of the stepping-stone model. Real evolution,

he says, cannot be modeled with a static fitness function.

Thus, he turns to the iterated prisoner's dilemma (IPD) game

to provide a fitness evaluation. The strategies of the

individual players are coded into genes, and the PGA changes

these genes in every generation. The programmer must first

represent the problem in genetic terms. The algorithm for the

PGA appears below.

1) Make a structure for the population, and initialize
the population.

2) Have each individual do local hill-climbing.
3) Have each individual select a mate within the

neighborhood.
4) Use crossover between the parents to create an

offspring.
5) Have the offspring do local hill-climbing.

If it does better than (acceptance criterion),
Then have the offspring replace the parent.

6) Goto step 3, unless done.

Figure 5 - The Parallel Genetic Algorithm
[Mühlenbein p 465]
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The individuals select mates based on their desirability,

presumably their fitness. An offspring usually has half of its

genes from each parent. According to Mühlenbein's earlier

works, this PGA has done much better than the GA on

optimization problems. Mühlenbein's interest here is in the

evolution of the whole population, instead of finding one

optimal strategy. He uses a look-up table to represent

strategies instead of a FSM. The look-up table has unused

portions within it. For example, the table would store the

play that an All-C strategy would use if the last game was

Defect-Defect. This play would be irrelevant, since Defect-

Defect will never be the outcome of a game played by an All-C

strategy. He argues that this is a feature, modeling real-life

evolution. This problem would also exist in a finite automaton

representation, since a FSM would be likely not to use every

possible state. He notes that the crossover operator does not

compare to real evolution, though.

Mühlenbein simulates the continent cycle by periodically

breaking the continent of IPD players into islands, then

recombining them. He notes that the variation of strategies is

reduced during the continent phase. When compared to a couple

panmictic populations, the continent cycle takes longer to

reach cooperation. But the continent cycle's average payoff

does not dip below 2.00, as do the panmictic populations.

Overall, the continent cycle produces a better population. The

ring population, where each individual has 4 neighbors,
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oscillates because the PGA mate selection is too "soft" for

this structure. Mühlenbein also finds that an island of All-D

players cannot successfully invade a population of 9 All-C

players. A group of All-D players successfully invades a large

panmictic population, however. Also, a continent cycle is the

first of the populations studied that evolves to a cooperating

population from a group of All-D players. These results seem

to confirm Darwin's theory. Note that the winning cooperative

strategies tended to look more like Tit-For-Tat than All-C.

F. Cellular Automata and the Prisoner's Dilemma

Nowak and May consider only two types of PD players in

their simulation. These players either always defect or always

cooperate. Also, the players do not keep track of previous

encounters. Every player on the matrix plays PD with its

neighbors. The highest scorer gets the square. The spatial

patterns that emerge from this game usually fluctuate back and

forth. Physics and biology are cited as two fields that can

benefit from the implications of this game.

Each square on the n x n lattice holds a cooperating or

defecting player. The owner of the square plays with its

neighbors, and the square is taken over by the best scorer

immediately around. The payoffs for this game are CC=1, DD=0,

(the defect when the opponent cooperates) DC=b, and CD=0. "b"

is the only parameter. Nowak and May found that making the DD
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payoff slightly larger than 0 had no effect, so that violating

DC > CC > DD > CD was not a problem. Also, the results are the

same whether or not the boundary squares are connected to the

opposite boundary squares. The value of b was found to be most

interesting between 1.8 and 2.0. When b>1.8, clusters of D

players grow, whereas they shrink when b<1.8. When b>2,

clusters of C grow, but they do not grow when b<2. Thus, when

1.8 < b < 2, the patterns that are produced vary wildly. The

number of cooperators stays around 32% of the population for

this range of b. This would be expected for the large,

symmetrical matrices. It also works for the chaotic, irregular

ones, though the authors cannot explain this.

Each player can have one of four colors. The cooperators

are blue if they were cooperators in the last iteration, or

green otherwise. The defectors are red if they were defectors

previously, or yellow if they were not. They generate an

"evolutionary kaleidoscope", examples of which appeared in

Nowak and May's article. Though the results look like Conway's

"Game of Life", the fate of every cell depends on 25 other

cells, instead of just 9. Every cell in question changes

depending on its 8 neighbors. Each of these neighboring cells

depend on their neighbors to determine their success. Thus,

every cell depends on the two layers of cells around it. The

authors point out that the patterns generated by their program

are both complex and regular in a way unlike any other

cellular automaton.
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"We believe that deterministically generated spatial

structure within populations may often be crucial for the

evolution of cooperation, whether it be among molecules, cells

or organisms." [16] [Nowak and May, page 829] This paper is

important because it shows the validity of cooperation in a

territorial environment, even when there is no memory of past

encounters.

The strategies of Nowak and May's experiment fluctuate

depending upon the payoff values. The moral of the Nowak and

May article is "territoriality favors cooperation" [Sigmund]

[15]. Sigmund points out a few real-life examples to back this

up. "Cellular automata provide a natural framework for

evolutionary models with spatial structure." [15] J. H.

Conway's "Game of Life" is a classic example of this. Nowak

and May combined evolutionary game theory with cellular

automata in their paper, and their experiment's results can be

unpredictable.

G. The Validity of Cellular Automata Experiments

Huberman et al [14] discuss the paper by Nowak and May

[16], where the number of cooperators evolve to the same

percentage of the population, given certain parameter values,

but regardless of initial conditions. Thus, there could be a

universal constant for 2 dimensional prisoner's dilemma

simulations. Cellular automata can produce some interesting
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patterns, but their behaviors might not map to anything in the

"real world".

A computer simulation and a real-world experiment are not

equivalent. Sometimes, the differences can be enough to

invalidate the social implications. Huberman and Glance

analyze the differences between computer simulations and real-

world systems. Then, they try the same simulation in

synchronous and asynchronous modes in order to show that the

results are not always the same.

A cellular automata simulation is only a model of the

dynamics of a natural process. The simulation uses discrete

time increments, with all players updated at the same time.

This can be defined by a finite difference equation. To a

process in nature, time is relative. Usually the elements get

their updates with occasionally flawed information at

different times. Differential equations describe this

asynchronous environment. The two types of equations are not

guaranteed to have the same solutions. Therefore, a computer

simulation of a real-world system should have asynchronous and

continuous time increments.

A square lattice of prisoner's dilemma players was

simulated synchronously [14]. A defecting player occupied the

center position at the beginning. Cooperators made up the rest

of the "world". After 217 generations, a symmetrical pattern

appears, looking a lot like a black and white fractal image.

Huberman and Glance carry out the same experiment, but with
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asynchronous time, updating only one player per time

increment. The pattern that appears after approximately 100

generations is a completely white image, where all of the

players are defecting.

When real-world systems have delays, it could be argued

that synchronous simulations are valid. The scores would

depend on player's past and current performances. But the

authors found that asynchronous updating of delayed scores

effected the evolution of cooperation, depending on the delay.

Computer simulations that study real-world systems should

be done carefully, so that the conclusions are valid. The

systems that people see in nature need to be modeled with

continuity and asynchronous time.

Fogel's paper [17] looks at conditions that result in

behavior patterns in a clear-cut, but evolutionarily complex

world. He reminds the reader at the end that these conditions

are not necessarily what is to be found in the "real world."

H. Payoff Values and their effect on Evolving Players

In the IPD supergame, two rational players stand to gain

when they can learn to "trust" their opponents. Fogel's paper

attempts to evolve a stable strategy for the prisoner's

dilemma. He quotes two rules from Rapoport in 1966, "DC > CC >

DD > CD", and "2*CC > CD + DC" [17].

Axelrod held a tournament in 1979 that used the payoff

38



values of Figure 1, where Tit-For-Tat won [1]. Later studies

have tried to find a more stable strategy by using a Genetic

Algorithm. Many of the resulting strategies of Axelrod's

second tournament [2] acted very similar to Tit-for-Tat. In

another experiment, the evolving rules played each other.

Effective rules propagated, while ineffective rules were

replaced. A trend of reciprocating cooperation eventually took

over the population.

The FSMs used to represent strategies have finite input

and output alphabets, and a limited number of possible states.

The finite (and fairly small) number of bits needed to

represent a FSM make it a good candidate for evolutionary

programming. The number of possible states for this experiment

was set to 8. The output alphabet consists of {C, D}, and the

input alphabet appears as (previous move, opponent's previous

move), or { (C,C), (C,D), (D,C), (D,D) }.

Fogel's first experiment merely confirmed that

cooperative behavior would evolve. "In each evolution, there

was an initial tendency for mutual defection, but after a few

generations (e.g., 5 to 10), machines evolved that would

cooperate if they recognized other cooperative machines." [17]

Eventually, the defectors were driven almost to extinction, as

expected.

Fogel performed a second experiment to see the effect of

population size on rates of cooperative evolution. He found

that a smaller population size does not mean quicker
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cooperation. In fact, there is little evidence to show that

1000 parents make a better sample than 50 parents. Fogel notes

that cooperation is usually seen by the tenth generation.

Also, "all of the best evolved FSMs are initially

cooperative." [17] When these best evolved machines play

against themselves, cooperation on both sides happens quickly.

This could be due to machine recognition of other machines

that reciprocate cooperation.

Fogel's third experiment was to see how changing the

payoff values affects cooperation evolution. If Rapoport's

second rule were violated, would a high DC value preclude

cooperation? This experiment revealed that most parent FSMs

scored a mean of approximately 3.0, when DC payoff values

ranged between 5 and 6. The FSMs would have a mean score of

3.0 if they mutually cooperated every time, however this is

not the case. Many of the FSMs were found not to be

cooperative when DC > 6. Fogel speculates that the best of the

parent machines may have tended to produce gullible offspring

that the parents could exploit. He concludes that mutual

cooperation tends not to evolve when DC > 6. Besides the

parents taking advantage of their offspring, alternating

cooperate and defection in this case leads to an average

payoff greater than 2 cooperations.

The payoff matrix has much to do with whether or not

mutual cooperation will evolve. Fogel identified three

critical regions:
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2 * CC > CD + DC
2 * CC = CD + DC
2 * CC < CD + DC

This boils down to how good 2 mutual cooperations compare to

an alternating cooperation, defection. Cooperative behavior

will evolve when it is "profitable" for the machines. If 2*CC

= CD+DC, then behavior will be stochastic, depending only on

the initial FSMs.

In the following chapters, the author presents a sequence

of simulations to study cellular automata, a population of

mobile iterated prisoner's dilemma players, the effects of

payoff values on IPD players, and the evolution of

cooperation. First, the author discusses the design and

approach of the experiments. Next, he discusses the simulation

modules. Common elements of the programs are then detailed.

After the procedure chapter, the author presents the results

and analysis. A discussion of the results follows. Conclusions

and recommendations are drawn from the discussion. Finally,

the future study chapter talks about experiments that could be

done in continuation of this research.
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CHAPTER III: DESIGN AND APPROACH

The author constructed a series of programs to study the

effects of payoff values on evolution of prisoner's dilemma

players. Each of these programs had a separate goal, and

produced separate results. However, each program used pieces

of the program before it, in order to cut down on the time to

completion. The fourth and final program combined elements and

ideas from the previous three. In a sense, the final program

evolved from its predecessors.

The first program recreated the simulation that Nowak and

May [16] described. Some additional features were added,

including "walls", which ties in Darwin's continent theory.

The program's goal was to show the effects of cellular

automata that Nowak and May described, and to examine how

including barriers affects the players.

The second program kept the idea that the players would

take up a spatial location, but the players moved randomly

about, playing only the other players that come into contact.

The keyboard controlled one player, allowing the human user to

interact with the players. The user moves where he/she wants,

and can switch between cooperation or defection. The other

players either always cooperate or always defect. The author

designed this program to be like a video game. The user moves

about, trying to stay alive. Each player started with an

average of 3.0, as if it had experienced a few mutual
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cooperations. However, when a player's average falls below a

1.75, the player dies. For a human to play this simulation

successfully, he/she must make his/her player strong enough to

withstand the mutual defections that surely will occur when

the cooperators die out. A player becomes strong by bumping

into cooperators. The more experienced a player, the greater

chance it has for survival.

The third program diverged from the themes of the earlier

two. The author suspected that all prisoner's dilemma games

are not created the same. The payoff values would affect how

well a player performs. A player, such as All-C, might have 10

DC payoffs and 10 CC payoffs. Another player might acquire 10

DC payoffs and no CC payoffs, and have a higher score because

of this. Now suppose the payoff value for CC increases. All-C

might gain the higher score because of this increase. The

third program examined the effect of different payoff values

on the rankings of finite state machine players who played

each other a total of 50 times.

The final program combines several elements from the

above programs. The FSM players wander about a simulated

world, playing the PD game every time it encounters another

player. The random interactions allow for delays like Huberman

and Glance [14] mention, making the simulation more realistic.

When a FSM bumps into another FSM, they play the PD game, and

their scores are affected by the payoff matrix that is the

"law" of the land, set at the beginning by the user. Walls
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exist, randomly placed, and serve as barriers to the players.

The author keeps the population size fixed, in order to keep

computation time to a minimum. Since the players are FSMs,

each player has memory of previous encounters. The players

start out randomly initialized, but the Genetic Algorithm

evolves the FSMs. Thus, better players emerge. The final

program shows the effect of the payoff values on the evolution

of the inhabitants. The algorithm for the final program

appears on the following page.
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1) Create a class for prisoner's dilemma players as
FSMs

2) Create a "world" where the players can exist.
The world has boundaries (walls) and a payoff matrix
that the user can specify.

3) Initialize the FSMs randomly. Distribute the players
throughout the world.

4) Reset the player's scores, memories, and other
variables.

5) Allow the players to wander randomly, playing the PD
game with every other player that they bump into.

a) Each player should remember the encounter.

b) When the players, as a group, have played a
certain amount of games, move to the genetic
algorithm phase.

6) Use the Genetic Algorithm to evolve the population.

a) Reproduction:
i) Evaluate each player's fitness by finding their

average score.
ii) Determine the average score for the group.
iii) Eliminate all below-average players.
iv) Give each player a chance to reproduce based

on fitness.

b) Crossover:
i) Pick 2 parents randomly.
ii) Make a new player for each dead one by 2-point

crossover of the parent FSMs.

c) Mutation:
i) Determine which players will have a mutation.
ii) If so, randomly change one bit of the FSM

code.

7) Continue steps 4,5 and 6 for 500 generations.

8) Generate a report about the players.

Figure 6 - The Algorithm of "Wandering Players".
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Several C++ classes are included in the final two

programs. These classes are the finite state machine, the

player class, the people class, the barriers class, and the

pay_matrix class. Each will be explained in the following

text.

The finite state machine was easily represented as an

array of 17 bytes. The first FSM byte represents the initial

play and the initial state of the FSM. The number 0 represents

the Defect play, and 1 represents the Cooperate play. These

are the only two possibilities, so one bit represents the

play. There are 8 possible states, numbered 0 to 7, or 000 to

111 in binary. To represent a combination of play and state,

only 4 bits are needed. Therefore, the first 4 bits of the FSM

are not used, but the lower 4 bits represent the initial play

and initial state. The play/state combination can be thought

of as an arrow, pointing to a new state. The second and third

bytes hold the 4 arrows for state 0, one for each input DD,

DC, CD, and CC, respectively. Likewise, the 4 arrows leaving

state 1 are held in the fourth and fifth bytes. Pairs of bytes

represent the arrows for the rest of the states. See Figure 7

for a close up of how to encode state 0 of a FSM. Figure 8

shows a drawing of a complete FSM.
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Figure 7 - How the FSM is encoded
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Figure 8 - Drawing of a FSM
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The player class includes the FSM array, and a history

array. One byte for every player comprises the history array.

The history array stores the last play between the player and

every possible opponent. During initialization, the program

copies the first byte of the FSM to every position of the

history array. The player class has several variables that

each player needs. These include the score, count of games

played, counts of each type of PD outcome, X and Y

coordinates, color, name, and fitness. The program calculates

the fitness by dividing the score by the count of games

played. Not all of these variables are in use by both

programs. For example, "Payoffs and Rankings" do not use the X

and Y coordinates, nor the color. Figure 9 shows the matrices

class for "Payoffs and Rankings". The player class appears in

Figure 10, as well as the people class. The barrier class, and

the matrices class used in "Wandering Players" appears in

Figure 11.

The people class includes the player class. A player

object can be thought of as an individual, while the people

object would be the society as a whole. The people class

includes primarily functions for the players. The genetic

operators reproduce, crossover, and mutate appear in this

class. There are functions reporting information about the

players, such as report, print, who_is_avg, and coop_count.

Report generates a detailed report of each player, whereas

print(player number) outputs the FSM for the player number
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/****** Matrices class ******/
class matrices
{
class pay_matrix
{
public:
int delta1;
int delta2;
int delta3;
int cc;
int cd;
int dc;
int dd;
float rank[num_players];
int sorted[num_players];
int sorted2[num_players];
// An array of how the players ranked.
pay_matrix() { init(); };
void init();
// overload the = operator
pay_matrix & operator = (pay_matrix & pm)
{ int i;

this->delta1=pm.delta1;
this->delta2=pm.delta2;
this->delta3=pm.delta3;
this->cc=pm.cc;
this->cd=pm.cd;
this->dc=pm.dc;
this->dd=pm.dd;
for (i=0; i<num_players; i++)
{ this->sorted[i]=pm.sorted[i];

this->sorted2[i]=pm.sorted2[i];
this->rank[i]=pm.rank[i];

}
return *this;

};
};
public:
pay_matrix payoffs[pop_size];
pay_matrix temp_po;
void sort(int opt);
void graph();
void three_d();
void table();
void count();
void find_best();

};

Figure 9 - The Matrices Class for "Payoffs and Rankings"
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/****** Group of people ******/
class people
{ int ii,jj;

public: // class inside a class
class player { private: int ii;

public:
unsigned char FSM[gene_size];
unsigned char history[num_players];
boolean dead;
unsigned char state;
unsigned char output;
long score, count;
int cc_count, dc_count;
int cd_count, dd_count;
int init_play;
int X,Y; // Coordinates
unsigned long color;
char name[7];
float fitness;
void init();
player() { init(); };
// overload the = operator
player & operator = (player & eq_to)
{ int i;

this->state = eq_to.state;
this->X = eq_to.X;
this->Y = eq_to.Y;
for (i=0; i<gene_size; i++)
{ this->FSM[i]=eq_to.FSM[i]; }
return *this;

};
};

float reproduce(); // Returns scaled fitness
void crossover();
int mutate(); // Returns the # killed
int coop_count(); // Amount of cooperation
void report();
void who_is_avg();
void play_a_game(int player1, int player2);

void play_a_game(int player1, int player2, int player3);
void tournament(Display *display, Window window, GC gc);

void old_tournament();
void init();
long total_s, total_c;
player member[num_players]; // Array of people
player tempg;
people() { init(); };

};

Figure 10 - The People Class
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/****** barrier class ******/
class barriers
{

public : int X, Y;
barriers()
{
X = 0; // rndd(0,MaxXCoord);
Y = 0; // rndd(0,MaxYCoord);
};

};

/****** Matrices class ******/
class pay_matrix
{
public:
int cc;
int cd;
int dc;
int dd;
pay_matrix() { init(); };
void init();

};

Figure 11 - Barriers class and Matrices class for
"Wandering Players"
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passed. The function who_is_avg figures out what the "average"

FSM looks like. Coop_count returns the average number of

cooperative branches within the population, which can give the

user an idea of the degree of cooperation. An array of players

is created here, so that the programmer only needs to realize

the people object. The other functions of the people class

deal with tournament and IPD playing.

Playing a round of the iterated prisoner's dilemma is

done by calling the play_a_game function. For the two player

case, two player numbers are passed with the function call.

The people object keeps an array of players, numbered from 0

to the constant num_players. These numbers are unique to each

player, and are easy for the programmer to deal with, similar

to human social security numbers. When the program calls the

play_a_game function, each player resets their FSM to the

state and next play found in the history array, using the

other player's number as the array offset. The players

recognize each other, and remember what they "thought" at the

last encounter. Thus, they make their next play. The player's

scores are updated, and their FSMs are moved according to the

outcome. These next moves are stored back in the history

array, for whenever these two players meet again. The

tournament function controls how the players meet.

Two tournament functions are provided, old_tournament,

and tournament. Old_tournament calls a round-robin function,

where each player plays everyone else a set number of times.
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The papers in the literature review use this type of

tournament. The author contributes to the IPD study by

introducing the other function, called simply "tournament". It

implements the idea of randomly moving the players. First, it

chooses a player to move. Next, it randomly attempts to move

the player in one of the 8 directions. The function checks the

boundaries, and then checks to see if a wall occupies the new

spot. If the player cannot move in the direction chosen, then

the coordinates are not updated. Finally, the coordinates are

checked against the other players. If another player occupies

the same coordinates, then the play_a_game function takes

over. When the programmer desires a round-robin tournament,

one call to "old_tournament" will suffice. However, the mobile

tournament function was made to be a part of the Xwindows

event loop. Therefore, the main program calls "tournament"

within a loop, until a minimum number of games have been

played by the population as a whole.

One difference between "Payoffs and Rankings" and

"Wandering Players" is that the former uses the

old_tournament, and does not move the players. Since the

players of "Payoffs and Rankings" do not need to occupy space,

the program does not use the barriers class. The barriers

class simply stores X and Y coordinates, and relies on a

function external to the class to place the barriers (give the

X and Y coordinates a value besides 0). Figure 11 includes the

barrier class. "Wandering Players" uses an array of barriers
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to represent walls. The pay_matrix class also differentiates

the two programs, as Figures 9 and 11 show. The latter program

only needed values for DC, CC, DD, and CD, which the user sets

at the beginning of the program. The "Payoffs and Rankings"

program, however, used an array of 900 matrices. Each of these

matrices was initialized to random values, with the constraint

DC > CC > DD > CD. The second constraint of 2*CC > CD+DC

appeared as a software controlled switch, which the user

controls. The "Payoffs and Rankings" program shows how these

different payoff matrices affect the rankings of the players.

It uses a function to graph the ranking of the player versus

the payoff matrices. Also, the payoff matrices can be sorted,

but no trends emerged from sorting the payoffs. Another

graphing function allows the user to make a three column table

with any three variables, for use with a three-dimensional

plotting program. Though the two final programs had different

goals, the main classes are essentially the same.
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CHAPTER IV: SIMULATION MODULES

This chapter describes the simulation segments of the

last section in greater detail. Specific implementation issues

are discussed here, on an individual basis. The segments are:

A) A module on cellular automata

B) A module about randomly interacting (mobile) PD

players

C) A module examining payoff values and ranking orders

D) A module exploring an evolving population of mobile

IPD players

The details of the four programs are described below.

A. Program 1 : Cellular Automata

The author wrote "Cellular Automata" in Turbo C on a 486-

based personal computer. The program requires the VGA graphics

driver provided by Borland. Memory requirements are less than

640K.

The author based the first program on the paper by Nowak

and May [16]. In the paper, they talk of a population of PD

players. These are not true IPD players, since they do not

keep track of previous games. Therefore, only the All-D and

All-C player types can be represented, each player either

cooperates or defects. The players play the PD game with each

of their neighbors. The players play a copy of themselves as
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well, which does not make a difference, according to the

paper, though it is convenient to program. Looking at the

immediate neighboring squares, the square under consideration

is taken over by the neighbor with the highest average score,

if it beats the original owner's average score. The program

uses the average score to give the players on the edges of the

population no disadvantage. Nowak and May used four colors,

red for defectors, blue for cooperators, green for a square

that was a defector, but becomes a cooperator, and yellow for

a square that was a cooperator, but becomes a defector. The

author introduced two more colors, pink for a defector's

square that is taken over by another defector, and grey for a

cooperator's square that is taken over by another cooperator.

This produces colorful displays of patterns, that also

indicate unstable areas. The program does allow the user to

change the colors. A user could restrict all the defectors to

red and all the cooperators to blue, for example. The default

payoff values are DC=1.9, CC=1.0, DD=0.0, CD=0.0, like those

used by Nowak and May.

The program allows these values to be changed by the user

as well. The program places no restrictions on the payoff

values, except what the C compiler accepts as a floating point

number. The author chose these values to correspond to Nowak

and May's paper. The DC value was not explicitly given in the

paper, just a range from 1.8 to 2.0.

With these values, the author observed the same effects
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as the paper described. The population consisted of 900

individuals, a size of 30 x 30. Some features of the program

included step by step control of the evolution. The program

has an edit mode, and a run mode. In the run mode, the

population evolves, and the squares reflect the evolution by

changing colors. The evolution is automatic, and continues

until the user presses "e", for edit mode. The program starts

in edit mode.

The population starts as a random field of red and blue

squares. The "i" button allows to user to initialize the

population at any time, for example, to start over with a new

population. The Enter key takes the players through one

evolutionary step every time it is pressed. When in edit mode,

a cursor appears over a player. The cursor can be moved around

with the arrow keys. Pressing the space bar changes the

strategy of the player. This way, the user can change the

individuals around. A player can also become a "wall" at the

user's discretion. A wall does not play the PD game, and it

does not give up its square. The walls serve to separate the

players from each other, and has some interesting effects. For

example, a diagonal line of walls can support two diagonally

adjacent cooperators, who will actually prosper. The key "c"

allows the user to change player's colors, as mentioned above.

The "y" key allows the payoff values to change.

The program keeps track of the number of cooperators and

defectors, and the percentage of the population that are
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cooperators.

B. Program 2 : The Prisoner's Dilemma World

The author also wrote the second program in Turbo C on a

486-based personal computer. Again, it requires the VGA

graphics driver provided by Borland. This program used the

code from "Cellular Automata", adding and deleting functions

as needed. As a result, the graphics routines and the user

interface are very similar. Recycling the previous program

allowed the author to produce a prototype within a short

amount of time. All programs were written with modularity in

mind, because the author planned to incorporate all previous

work together in the last program.

In the "Prisoner's Dilemma World" simulation, a group of

99 PD players move about randomly on a 30 x 30 square area. As

in the "Cellular Automata" program, the players were not IPD

players since they did not remember past games. One additional

player appears as a white square. The keyboard controls its

movement, as well as its current prisoner's dilemma strategy.

The other players only have one strategy, either always

cooperate or always defect. Every time a player bumps into

another player, the two play a game. The computer tracks the

score, number of games played, and average for each player.

When a player's average falls below 1.75, that player dies.

The simulation lasts until the user-controlled player dies. If
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this condition were removed, then the simulation would

continue until all but one player dies, or the last two

defectors kill each other. This is not likely, but if the last

two defectors did kill each other, then whatever remaining

cooperators would thrive. The computer displays the number of

players left, and how many of them are cooperators. Also, the

user's player's statistics are shown. A special key, "x",

shrinks the boundaries of the world every time it is pressed.

This feature speeds up the game, since the players have less

room to move around.

C. Program 3 : Payoffs and Rankings

This program was written in C++, on an HP Unix system.

The Unix system provided greater speed and memory capabilities

than the personal computer the author had used to this point.

Before starting this thesis, the author experimented with

FSMs, Genetic Algorithms, and object-oriented programming. The

switch to the Unix system allowed the author to incorporate

these early attempts. Though the Genetic Algorithm code did

not need to be present for this program, the author realized

that it would be included in the final program.

"Payoffs and Rankings" examined the effects of altering

payoff values on a population of PD playing FSM's. It

generates a set of FSMs that play each other a total of 50

times. The program compares the outcomes of the FSMs according
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to different payoff values, and tallies when the ranking order

of players, from best to worst, changes. The players do not

move, but rely on the above tournament for interactions with

other players. The author created this program as a tool to

discover trends among payoff matrices. This program provides

graphs and statistics to analyze the data. Two groups of

players tested this program. A set of 5 players provided

average payoff values that generate rankings. A group of 50

players were used for other data analysis.

D. Program 4 : Wandering Players

The final program also used C++ on the HP Unix system.

First, the author copied sections of code from "The Prisoner's

Dilemma World" into a copy of "Payoffs and Rankings". Though

C++ will compile and run C program lines, the author took the

time to convert all input and output commands to C++.

Structures from "The Prisoner's Dilemma World" became classes

in the new program. The old graphics routines had to be

removed, since the Turbo C graphics commands did not have

corresponding commands under the Unix C library. Later, the

author added a small Xwindows program for graphics, and

"Wandering Players" was born.

This program simulates a world where players randomly

interact. The author kept the world size to a 10 x 10 area,

because of time constraints. Walls take up some of the space
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that the players have to move around. The number of walls

depends on the world size, defined as "length*2+width*2+c".

With a small world, the programmer set the constant c=1. The

people of this simulated world start out as random FSMs, and

the population evolves for 500 generations. The author

conducted several runs, each with a different payoff matrix.

The dominant player types are examined when the simulation

finishes. The author shows that different payoff values lead

to different evolutionary traits. Special runs of this program

use the round-robin tournament as did Fogel [17] and Axelrod

[3], except with differing payoff values. This allows the

author to examine the effects of a spatial, mobile population,

as opposed to the more traditional round-robin tournament.

During the Genetic Algorithm sequence, the program kills the

below average players. The program informs the user when

almost all of the players are killed, or if only a few die.

Either condition indicates that the players have evolved to a

local maximum, since most are about the same genetically. The

author kept an eye on this, but the mutation operator took

care of any population becoming stagnant.

This program has graphics capabilities. Xwindow routines

are embedded within the program, and turned on by a constant

in the "#define" section. The author decided to put this

switch as a constant in the program instead of a variable. The

program runs much faster without the graphics turned on, and

the graphics cannot be displayed on the VT100 terminal that
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the author often used. The program has to be re-compiled after

the Xwindow switch changes state. The graphics are interesting

to watch as the players move around. The program does not

overwrite the player's former positions, simply from an

aesthetic point of view. Instead of colored blocks moving

about on a black background, the players leave a colorful

trail. The walls appear as white, and, of course, do not move.

The program also features a graphing switch, again

defined as a constant. When the programmer sets this switch to

make a graph, the program prints only the generation number

and the average fitness score. The cooperative branch count,

as explained later, can be chosen to print in place of the

fitness. When the user runs the program, the results can be

piped to a file, such as a graphing data file. Note that the

payoff values are included in the first 3 lines, for the user

to comment out, or delete, according to the graphing package

used.

As a final feature, the program generates a report of the

players in their final state at the end of the simulation,

unless the graph option prohibits this report. The program

examines every bit of every FSM, and computes whether the bit

is set a majority of the time. The program creates an

"average" FSM in this manner. The report contains this average

FSM, as well as the information about the number of

cooperative branches for each FSM. The author constructed this

program as a simulation tool with speed in mind. A version can
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easily be developed for the common user, though it will be

slower.
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CHAPTER V: PROCEDURE

The programs described in the previous chapter contain

concepts common to both the literature surveyed, and the

programs themselves. These central ideas are explained here.

A) The Finite State Machine

B) The Players

C) The Population

D) The Genetic Operators

E) The Data Structures

A. The Finite State Machine

The players of the two-player iterated prisoner's dilemma

game have a built-in finite state machine, similar to an

organism's DNA. Each FSM is a string of 17 bytes, numbered

from 0 to 16. These bytes encode how the player will react to

other players. Byte 0 contains the initial play and the

initial state. When one player encounters another for the

first time, this byte tells how it will play. The first 4 bits

of this byte are not used. The next bit represents the initial

play, 0 for defect and 1 for cooperate. The final three bits

represent the initial state of the FSM. The FSM's are limited

to a total of 8 states, since there are 8 different

combinations of 0's and 1's that a three bit word can have.

The rest of the string should be thought of as "what if"
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cases. Each state uses two bytes, broken up into 4 bit

sections. The first 4 bits represent the next move and next

state of the FSM if DD is the outcome of the game. Like above,

the left-most bit represents the move, and the other three

represent the state. The next 4 bits represent the next move

and next state for the DC case. Note that the outcomes are

relative to the player. For example, if player 1 has the

outcome of DC, then player 2 sees it as CD. The second byte

tells the FSM what to do for the case of CD and CC,

respectively. This pattern continues for the other states.

Each FSM has 136 bits, with 4 bits not used at this time,

allowing 2132 possible representations, or 5.44 * 1039 possible

strategies.

B. The Players

The players are more than just the FSM, just as organisms

are more than their genetic pattern. Each player also includes

a score, totalling all points accumulated, and a count of the

number of games played. With these two variables, the program

computes an average which serves as the fitness of the player.

The players have position, kept as a pair of coordinates. When

a pair of players meet, each FSM will move from one state to

another. The next state and next play becomes a history, or

memory of the encounter. These histories are stored as a list

for the next time the players run into each other.
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C. The Population

Since the language used, C++, supports object oriented

programming, the players have a variety of functions attached.

The individual players only have an initialization routine.

However, the player class nests within a population class. The

population, as the name implies, is the collection (array) of

players. Thus, each player has an identifying number. The

constant "pop_size" defines the size of the population. The

most used function of the population plays the prisoner's

dilemma game between two players. The "play_a_game" function

looks at the player's histories together, and updates the

FSM's accordingly. The author overloaded this function to play

the three player prisoner's dilemma as well. Though not used

for this thesis, the three player mode can be invoked simply

by passing three numbers to the play_a_game function. A

tournament function plays every member of the population

against each other for the purposes of examining the payoff

values' effect on stationary players. Thus, the "Wandering

Players" program, that randomly moves the players, does not

normally invoke this tournament. The programmer can run this

program with the old tournament function, when desired.
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D. The Genetic Operators

The population object contains genetic operators. These

operators are reproduce, crossover, and mutate. The population

of players evolves as described in the literature review. As

mentioned above, a player's score divided by the number of

encounters provides the fitness function. Two players are

needed for the sexual reproduction function, and mate

according to their fitness. Note that sexual reproduction

means that there are two parents, though the players do not

have gender. The crossover function randomly picks two

crossover points, and fuses sections of the parent FSMs to

make a new FSM. The crossover only produces one offspring, but

the successful player has many chances to reproduce. Mutation

occurs approximately once every 20 genes. The new players

replace the least successful ones, and all memories are erased

during the genetic step. The genetic step happens after the

average number of moves exceeds the number of players

multiplied by a constant of 500. In preliminary tests, the

author found that the average fitness scores would level off

after 250 generations. The cycle continues for 500

generations, to be relatively sure that the average scores

will not drastically change.
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E. Data Structures

The programs used arrays and objects as the primary data

structures. An array keeps the finite state machine code, as

well as the history of past games with other players. Though

the programmer used C with the first two programs, he made the

code as modular as possible, to make the transition to C++ as

easy as possible. The C structures were placed with the

functions altering them. Later, C++ classes took the place of

former structures. The programmer used arrays with objects as

well. The author includes more detail about the classes in the

Design and Approach chapter.
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CHAPTER VI: RESULTS AND ANALYSIS

The author wrote both "Cellular Automata" and "Prisoner's

Dilemma World" as tools to examine prisoner's dilemma

populations and concepts. The programs do not supply any

statistical data or graphs. Therefore, the observations

gleaned from these programs will be included in the discussion

chapter.

For the "Payoffs and Rankings" program, a fixed-size

population of players play the IPD game a given number of

times. The player's scores are evaluated according to 900

different payoff values. Five players are enough to

demonstrate that the payoff values affect each player's score,

though 50 players also provided results. The program makes

every player randomly. Each player plays the IPD with each

other player 4 times, including a copy of itself. This

environment produces a set number of mutual cooperations,

mutual defections, etc, for different payoffs. 900 random

payoff matrices are studied. The matrices conform to the rule

DC > CC > DD > CD. The program allows the user to decide

whether to use the rule 2*CC > DC + CD. When the user chooses

the second rule, then the program only considers the 406

remaining payoff matrices. When the payoffs change, the

rankings change, as seen below. "Payoffs and Rankings"

produced the below results, finding payoff matrices that

produces different player ranking orders.
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Player
Ranks Frequency Explanation
-----------------------------------------------------------
1 4 2 5 3 occurred 66 times. 7%
1 4 3 5 2 occurred 98 times. 10% 2, 3 switch
1 5 2 4 3 occurred 18 times. 2% 4, 5 switch
1 5 3 4 2 occurred 587 times. 65% 4, 5; 2, 3 switch
2 3 1 5 4 occurred 9 times. 1% 1, 2; 3, 4, 5 switch
2 4 1 5 3 occurred 121 times. 13% 1, 2 switch
2 5 1 4 3 occurred 1 times. 0% 1, 2; 4, 5 switch

Total = 900

Table 1 - Initial Results from "Payoffs and Rankings"

How successful the IPD players are depends on the values

of the payoff matrix. The first player was the best most of

the time (received the rank of 1), 84% of the time. The second

player ranked worst 67% of the time. The third player got 3rd

place 75% of the time. The fourth player got 4th place 67% of

the time. The fifth player came in 2nd 75% of the time.

The ranking 2 3 1 5 4 is the most interesting, since the

players really switch around, compared to 1 4 2 5 3. The other

cases can be explained by one or two players doing better

under the payoff values than the player immediately in front

of it.

The players themselves are not that important. What is

important is how many DC's, DD's, CC's, and CD's they get when

they play others. For the above, the players had the following

game outcomes:
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Number of times that Total
these outcomes occurred: Games
DC CC DD CD Played:
---------------------------------

Player A 18 8 22 2 50
Player B 0 26 4 20 50
Player C 6 26 12 6 50
Player D 4 14 20 12 50
Player E 16 8 22 4 50

Table 2 - PD Outcomes for 5 Players

D.B. Fogel quoted Rapoport (from 1966) about the second PD

rule, which the above chart does not take into account. This

rule states "2*CC > CD + DC", which restricts the payoff

values even further. Here are results when this rule is taken

into account.

Only cases where 2*CC > CD + DC will be printed.

1 4 2 5 3 occurred 66 times. 16%
1 4 3 5 2 occurred 53 times. 13%
1 5 2 4 3 occurred 18 times. 4%
1 5 3 4 2 occurred 138 times. 33%
2 3 1 5 4 occurred 9 times. 2%
2 4 1 5 3 occurred 121 times. 29%
2 5 1 4 3 occurred 1 times. 0%
Total = 406

2 CC > CD + DC happened 406 times.
2 CC = CD + DC happened 13 times.
2 CC < CD + DC happened 481 times.

Table 3 - Initial Results with 2*CC > CD + DC

Notice how 1 4 3 5 2 and 1 5 3 4 2 are the only two outcomes

that are affected. Outcome 1 5 3 4 2 dominated previously, but

with this rule in effect, it is not much more dominant than 2

4 1 5 3. Because the second rule restricts the payoff values
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to a prisoner's dilemma game, the rest of the paper will focus

on the case that uses the rule.

The results of the first run with 5 players appear below.

The first column is the ranking order, followed by the number

of occurrences. The author calls differences between payoff

values "delta" values, and refers to them as d1, d2, and d3.

The d1, d2, and d3 values are the average differences DC-CC,

CC-DD, and DD-CD, respectively. The last 4 columns show the

average payoff values that result in the ranking pattern. The

results show that the 5 players will be ranked differently,

depending upon the payoff values.

Only cases where 2*CC > CD + DC will be printed.

pattern # occurrences d1 d2 d3 dc cc dd cd
1 4 2 5 3 66 times 16% 34 58 13 | 124 90 31 18
1 4 3 5 2 53 times 13% 45 47 10 | 118 73 25 15
1 5 2 4 3 18 times 4% 6 27 43 | 96 90 62 18
1 5 3 4 2 138 times 33% 29 21 43 | 115 86 65 21
2 3 1 5 4 9 times 2% 6 119 4 | 161 155 35 30
2 4 1 5 3 121 times 29% 14 77 14 | 124 110 32 18
2 5 1 4 3 1 times 0% 6 56 63 | 136 130 74 11
Total = 406

Table 4 - Average payoff values that affect rankings.

This chart shows that the delta values affect how well a

player will do. To generalize, a fairly small d1 and d3, but

large d2 produces perhaps the most interesting rankings of 2 3

1 5 4. A small d1 or d3 value seems to point to an unstable

set of rankings. Consider 1 5 3 4 2 to be "normal", since it

is the dominant ranking order. Its delta values are fairly
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even, probably much like the payoffs DC = 5, CC = 3, DD = 1,

CD = 0 that Axelrod used. Aside from a big d2 value, the other

differences from "normal" have a d1=6, or a d3 <= 14. The

variances from "normal" are usually when one player overtakes

another in the ranking order. The change in delta values can

be subtle to allow one player to suddenly out-score another.

The program ran with 50 players, and made a table of the

ranking of player 4, d1, and d3. The difference DC-CC and DD-

CD stood out as the delta values most likely to alter the

player's ranking order. The author chose player 4 at random,

though the other 49 players gave almost identical results. A

three dimensional plot of these values shows a striking trend,

as seen in Figure 12. In this figure, each triangle represents

player 4's rank. Spikes appear below the triangles to give the

viewer better perception. The lower the d1 and d3 values, the

more likely this player would be to score worse in the

population. Of course, when player 4 scores worse for a set of

payoff values, then another player scores better. Player 4

ranks better when the delta values are large. When d1 or d3 is

low, player 4's rank could seriously be affected.

"Payoffs and Rankings" executed with 10 randomly-

initialized groups of FSMs. This showed that the changes in

the ranking of players were not confined to one group of FSMs.

The author found one case in the eight run, where there was no

difference in the rankings. This run shows that the FSMs of

the eighth run were not affected enough to cause a change in
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Figure 12 - Delta Values and Ranking Changes
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rankings. This program ran for a population size of 50

players, and confirmed that the rankings changed for a

different sized population as well. If a changing payoff

values affect a small population, it only goes to reason that

a larger population will be similarly affected. Figure 13

shows the rankings for player 1, out of 50 players. Note that

the ranks are numbered 0 for best, to 49 for worst. This

player usually does not have a good fitness rating, with an

average of 46. However, under certain payoff values, the

ranking shoots up 10 places. The higher the rank, the more

likely this player would reproduce in an evolving population,

or at least survive until the next generation. The ranking

difference supports the idea that the population will evolve

partly according to the payoff values. The final program

explores this.

The "Wandering Players" program used the payoff values

from table 4, which produced different ranking orders. These

payoff values were chosen because they had already proved to

give different rankings of IPD players. Now they would be put

to evolving populations, to see how they effected the

evolution of cooperation.

The author overcame the problem of comparing evolution of

populations by scaling the fitness scores. For example, how

can one compare a fitness of 2.6 (with a payoff of 3 for

mutual cooperation), with a fitness of 46.3 (with the mutual

cooperation payoff of 90)? Scaling the fitnesses to a range of
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Figure 13 - How Payoff Values Affected Player #1
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0 to 99 provided a solution. No player can achieve a score

less than CD, nor higher than DC, so these values became the

lower and upper bounds of the scale. Mutual defection became

the value of 33, and mutual cooperation mapped to the value

66. The program first checks to see which range the value-to-

be-scaled fits. Then the program interpolates this value to

find the scaled score.

The author examined another form of measuring the amount

of cooperation within a population. Each FSM has 8 states,

with 4 arrows per state. Each arrow has an output of C or D,

and points to another state. 8 x 4 = 32, plus the initial

arrow equals 33 possible cooperative branches. A player with

33 cooperative branches would be All-C, and a player with 0

cooperative branches would be All-D. A Tit-For-Tat player

would be somewhere in between, probably around 17 cooperative

branches. A player could be All-C, with only 5 cooperative

branches, though. If the initial arrow points to a state that

always points back to itself, then only 5 arrows would be used

for this FSM. However, a single mutation could make this

player an All-D. Therefore, this method of measuring

cooperation of a population could suffer on an individual

scale, but would give a good general indication when measuring

the population's cooperativeness. This method corresponded

well with the graphs of the scaled average score. See Figures

14-17 on the following pages.
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Figure 14 - Round-Robin Population Evolution
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Figure 15 - Mobile Population Evolution
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Figure 16 - Round-Robin Population Cooperative Branch Count
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Figure 17 - Mobile Population Cooperative Branch Count
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The amount of cooperation within a population depends on

the payoff values, as the "Wandering Players" program shows.

First, the population of 100 players play a round-robin

tournament of 20 games for each pair of players. This

experiment repeats for the sample payoff values chosen above.

Figure 14 shows this evolution of cooperation for the 6 cases

chosen. The seventh pattern only made a difference in 1 case,

so it was not used. Though the graphs include the fifth

pattern, it is very similar to the sixth pattern. These graphs

clearly show that the payoff values affect the evolution of

cooperation. Next, the players wander about randomly,

replacing the round-robin tournament. When two players meet,

they each load in the histories of the last game against each

other, and play another round of the IPD game. The player

remembers each experience from his point of view. If one

player remembers a CD outcome, the other player will remember

a DC outcome. The wandering continues until the population has

counted a total of 500*number-of-players games. Naturally,

some players will not have as much experience as others. A

player could conceivably be trapped within walls, and not play

the game at all. This situation does not happen, but limiting

the tournament by counting the games played by everyone allows

for this condition without hurting the experiment. Figure 15

shows the effect of different payoff values on the scaled

fitness scores of a mobile population of players. Next, Figure

83



16 shows the evolution of cooperation according to the count

of cooperative arrows of the FSMs. Figure 17 also shows the

effects on the evolution of cooperation, except it graphs the

average number cooperative branches for the mobile case.

Cooperation is precluded for one case in the round-robin

experiments, and for two cases in the mobile experiments.

These appear as the graphs that quickly fall to mutual

defection payoffs, and do not rise within the 500 generations

studied. The FSMs for every run of the mobile population are

averaged, and the results appear below. As predicted, the FSM

codes are different for each run.

Payoff Values States
DC CC DD CD init 0 1 2 3 4 5 6 7
----------------------------------------------------------
5 3 1 0 f7: 690e 0770 883e 0b27 c81f 964b e138 67b3

124 90 31 18 a8: 6718 0734 9d66 1214 6799 cec2 079e 66b6
96 90 62 18 f7: c34c 3580 1148 7eda 5a53 3523 4699 7721
115 86 65 21 a1: 5107 71f4 bd44 a0b5 4122 0524 1b19 77a1
161 155 35 30 8: 6f88 5cac e93b ff9b 5f9c 61ad e589 1372
124 110 32 18 48: 7c0b fa2b f8ed b35b 7931 fe8b eb1b 9e3a
118 73 25 15 96: 603d 5c42 6077 3963 7a31 82c6 4a32 c9a3

Table 5 - The "Average" Evolved FSMs.

The next figure shows the best FSM for the run, after 500

generations of a mobile population. Again, these FSMs are

different from each other. These should be close to the

corresponding average FSMs in most cases, since the best genes

tend to propagate through the population.
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Payoff Values States
DC CC DD CD init 0 1 2 3 4 5 6 7
----------------------------------------------------------
5 3 1 0 f7 : 690e 0770 883e 6f27 261c 8ecb e918 67b3

124 90 31 18 a8 : 6718 0734 9566 1298 7b99 1ac1 98cc b2b6
96 90 62 18 f7 : 7dcd 0734 0d23 45da 5a1f 50a5 1031 7721
115 86 65 21 3f : 2818 66c5 3e57 52d6 d4c2 5022 0d36 ba28
161 155 35 30 08 : 6788 5c0b e93b bfbf 5f9c 51bd 2189 136b
124 110 32 18 c8 : f418 da2a faed b35b 7930 de0a eb1b 963a
118 73 25 15 96 : 603c 5843 6477 3963 7a31 82c2 ca77 c9a2

Table 6 - The "Best" Evolved FSMs.

The game of Chicken appears repeatedly in studies similar

to this. The author includes a special run of the final

program showing the evolution of cooperation among players of

the iterated Chicken game. See Figure 18, on the following

page. The payoff values used are the same as Danielson [5].

The main difference between Chicken and the prisoner's dilemma

are the payoff values. Chicken punishes mutual defection the

most. The graph shows that the Chicken players evolve mutual

cooperation very rapidly, and keep the level for all 500

generations. Danielson's point that this game better models

some human interactions means that cooperation would evolve

more rapidly than expected from an IPD simulation.
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Figure 18 - The Chicken Game
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CHAPTER VII: DISCUSSION

In the "Cellular Automata" program, a problem arose which

Nowak and May [16] did not mention. The generated patterns

were not always symmetric, as expected. For example:

Next iteration
Initial pattern Expected Actual
***. ***. ***.
***. **.. ***.
**.. **.. **..
***. **.. **..
***. ***. ***.

* = cooperators
. = defectors

Figure 19 - Unexpected Cellular Automata Pattern

Why would the defectors "convert" a square to the south,

but not the one to the north as well? The problem existed in

the function that updates the map after the PD games have been

played. A square would be taken over by the first neighbor

with a better score. If another neighbor had a score even

higher than the first conquering neighbor, then this new

neighbor would take over the square. The surrounding neighbors

are examined from the row above to the row below it, and from

left to right. What occurred in the above case was that a

square would have two neighbors with the same score. These

squares would be taken over by the first neighbor examined

with this score, but the second neighbor would not be

considered. The author changed the program to look for this
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case. When this occurs now, the square will be taken over by

the neighbor that plays the same. If a cooperator has two

neighbors, and both neighbors have the highest score around,

but no more than one is a defector, then the square will

remain a cooperator.

The "Cellular Automata" program confirmed the results

that Nowak and May [16] described. The addition of walls

revealed that 2 cooperators can survive in a world of

defectors. Without the walls, fewer than 4 cooperators would

die out. The author observed patterns that would evolve for

hundreds of generations before settling down, or killing off

the cooperators. The Cellular Automata program allows for

editing of the pattern, so the user can interactively

experiment with patterns.

The program performed like the one described, including

the groups of cooperators that formed "spinners" and

"travelers". The boundaries of the world often helped support

the defectors. For example, a square group of cooperators in a

world of defectors would grow, eventually taking over the

world except for an outer ring of defectors. Adding horizontal

and/or vertical walls produced a similar effect - the

defectors would be able to retain a line of spaces at the

boundary. The additional colors of this simulation allowed the

author to observe that even in what appeared to be a stable

situation, some border cells actually were being taken over by

the same type of player every time. The user could place and
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remove walls at will, isolating sections and then re-combining

them. The process takes time, however, and the walls occupied

space, meaning that to place a wall on a cell, the original

occupant would be lost. The author discovered that a diagonal

wall supports two cooperators, and can actually allow them to

prosper. A diagonal down the middle of the world, for example,

might start with only two cooperators, but they would quickly

take over other cells along the diagonal. An example screen

from this program appears in Figure 20, on the following page.

The "Prisoner's Dilemma World" was presented to the

public at Speed School's 1994 Engineers' Days. Every year, the

Student Council of Speed Scientific School, at the University

of Louisville, holds this exhibition featuring current

research. Students are encouraged to present projects about

the engineering field that they study. The student chapter of

the Association for Computing Machinery at the University of

Louisville requested that the author present this project on

their behalf. The author tailored this program to show the

public aspects of the prisoner's dilemma.

Groups of people would come to the display, with varied

levels of understanding. A group of computer science

engineering professors might be followed by a class of school

children. To deal with this situation, the author explained

the prisoner's dilemma game, then had two volunteers sit at a

table. Each person held two cards, one marked "Defect" and the

other marked "Cooperate". At the count of three, both people
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Figure 20 - Sample Screen from "Cellular Automata"
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played a card. The exhibitor kept the scores on a chalk board,

using the payoff values of Figure 1. The game repeated between

3 and 7 times, at the exhibitor's discretion. He would tell

the players, before they played their final card, that this

round would be the last. Next, he tallied the results, finding

the average payoff per round. Though this demonstration was

not supposed to be a controlled experiment, he noted some

observances. Many players tended to defect after hearing that

they were about to play the last round. An example of how the

demonstration went appears below in Figure 21.

Iteration Player 1 Player 2
---------------------------------
1 C C
2 D D
3 C D
4 C C
5 D D

--------------------------------
Average 8/5 13/5

Figure 21 - An Example Game from the Demonstration

The exhibitor also observed that a player rarely got an

average score of >= 3. Of course, he could always hold a few

extra rounds to make the point that gains made from early

defection(s) would not pay off in the long run. No couple of

players managed to cooperate every time.

After the demonstration, the exhibitor explained the

"Prisoner's Dilemma World" simulation. Children especially

liked it. Often, these young players would set their strategy
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to "defect", and go off in search of cooperators to exploit.

They tended to hunt the cooperators into extinction. Then,

realizing that any encounter with another player would lower

his/her average, the child would stay away from all players.

The programmer likened the situation to a city where people

are afraid to leave their homes. One high school student

caught on to the idea quickly, saying that it would be best to

find a cooperator, then follow it around, cooperating with it.

Many defectors would kill each other off, meanwhile the user's

player would become strong. When a player with little

experience gets the sucker payoff, the result might be bad

enough to kill it. However, a player with 1000 mutual

cooperation games played would not suffer much from one

encounter with a defector. The number of cooperators would

fall much more rapidly than the defectors. Once the

cooperators population was decimated, the defectors would

start dying in great numbers, since they depended on the

cooperators to survive. In a few interesting cases, the

cooperators managed to survive well into the game, even

outnumbering the defectors. The cooperators must have been

either well grouped, or very lucky with respect to whom they

bumped into. A sample screen from this program appears on

Figure 22.
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Figure 22 - An Example Screen from "Prisoner's Dilemma
World"
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The simulation allowed the players to develop a strategy

much like Tit-For-Tat. The successful player would cooperate

with the cooperators, while either avoiding or defecting

against the defectors. The exhibit showed the basics of the

Prisoner's Dilemma game, as well as game theory concepts. One

teacher suggested trying to have the children develop a

simulation like the Prisoner's Dilemma World. The exhibitor

commented that the class might enjoy programming a version of

Rock-Paper-Scissors World instead. With the help of some

junior Rock-Paper-Scissors experts, the payoff matrix appears

below.

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

Figure 23 - Rock-Paper-Scissors Payoff Matrix

"The Prisoner's Dilemma World" program has only a few

possible outcomes. Either the defectors die out, and the

cooperators live on together, or the cooperators die out, and

then the defectors die out. The chance of all the defectors

dying is slim, since the last two defectors would have to kill

each other. If only one defector survives, it will eventually

kill all of the cooperators. With the addition of a keyboard
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controlled player, the user can switch strategies to kill off

the defectors, while making the cooperators strong. However,

the best the user can really hope for is to survive. The

simulation starts with an approximately equal amount of All-D

and All-C players. In the observed runs, players of both types

start dying, but the cooperators die roughly twice as fast.

The author observed people who successfully moved their player

to survive until the end adopted a strategy similar to Tit-

For-Tat. They would cooperate with the All-C players, and

defect against the All-D players. The author observed that

people tended to defect first against an unknown player. The

literature review supports these observations.

The "Payoffs and Rankings" program generated some

interesting results. First, the payoff matrices that affect

one population of players might not effect another. The

average payoff values that did have an affect revealed that

the differences DC-CC and DD-CD had the most impact. The

second delta value, CC-DD, did not make as much difference to

the players. The three dimensional graph illustrates that a

player's rank stabilizes when the d1 and d3 values are large.

The rank of a player can mean whether or not the player's FSM

code survives in the population. A small difference in the

rank means a great deal to the player.

Genetic Algorithms find solutions in large search spaces

in a short amount of time. The finite state machines evolve

into optimal IPD players in most cases. From a computer
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science point of view, FSMs make good candidates for Genetic

Algorithms because they readily break down into bit patterns.

Object Oriented Programming, such as C++, allows the

programmer flexibility in adding classes and class functions

from previous work. This practice cuts down the time needed to

engineer software. If the previous work was well designed,

then the pieces will be modular enough to be removed and

recombined with other software. The author found this to be

the case as he evolved the final program from a variety of

parent projects.

A graphics demonstration of Xwindow functions was one

such project that the author mated with the project. Xwindow

libraries provide a machine independent graphics capability.

However, the author found that the machine independent concept

did not extend to his version of Turbo C. In the future of

software engineering, the author expects more to be made of

the Xwindows functions. Also, the software engineering

paradigm of evolving programs will become more important. This

can be done explicitly by having a Genetic Algorithm evolve

programs, also know as "soft" computing. More implicitly,

software authors are evolving programs by using pieces of

their own work over and over again. Consider the personally

built libraries of functions as chromosomes, and the

biological analogy can be taken to a new level.

As previously mentioned, the "Wandering Players" program

overloads the PD playing function. If a programmer used
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"Wandering Players" as an include file, she could explore the

3 player IPD game by simply adding a third player number as a

parameter to the play_a_game function. For example, the call

"play_a_game(11,43);" has players 11 and 43 play one round of

the prisoner's dilemma. The call "play_a_game(11,43,28);"

would have players 11, 43, and 28 play one round of the 3

player prisoner's dilemma. The internal workings of the

play_a_game function are hidden to this programmer, but she

would not need to see the details. Thus, the "Wandering

Players" program should be seen as a software tool, made of

building blocks, rather than as a homogenous whole. Future

study by the author will likely use this program as a starting

point.

The "Wandering Players" program showed that populations

of IPD players evolved differently, depending on whether the

programmer used the round-robin or the mobile tournament.

These differences can be seen on Figures 24-27. Figure 24

graphs the evolution of cooperation for the population with

payoff values of DC=96, CC=90, DD=62, and CD=18. The mobile

population does not evolve cooperation. In Figure 25, which

uses different payoff values, the mobile population evolves

cooperation quickly, and stays at a higher level than the

round-robin population. Figure 26 shows that the mobile

population evolves faster for one set of payoffs, but the

round-robin population attains mutual cooperation. The author

includes Figure 27 to show that the evolutions are again
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different for round-robin and mobile tournaments. These

figures show that the mobile tournament does not evolve a

population better than the round-robin tournament. However,

selecting the mobile tournament causes the population to

develop differently than it might with the round-robin

tournament. The other payoff values that this thesis studies

show that the evolution can be very similar for mobile and

round-robin tournaments.

To determine if the outcomes were sensitive to initial

conditions, the author ran the "Wandering Players" program

using several different initial populations. He achieved this

by changing the random number generator's seed value. The

populations evolved differently for each seed value, as

expected. The initial players form an environment, which has

impact on the evolution of cooperation. For the rest of the

experiment, the author used a seed value of 95. The consistent

seed value assures that the initial populations are the same

for each run. Thus, the evolution of cooperation with varied

payoff values show that the payoff values themselves make the

difference in how a population evolves. The evolution with

different seeds appears in Figure 28.

The graphs in Figure 28 show that outcomes are sensitive

to intial conditions. The Genetic Algorithm converges the

population to a local maxima, without reaching mutual

cooperation. The author discusses this problem in the next

chapter.
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Figure 24 - Mobile and Round-Robin Evolution #1
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Figure 25 - Mobile and Round-Robin Evolution #2
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Figure 26 - Mobile and Round-Robin Evolution #3
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Figure 27 - Mobile and Round-Robin Evolution #4

102



Figure 28 - Evolution with Different Random Number Seeds
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CHAPTER VIII: CONCLUSIONS AND RECOMMENDATIONS

This thesis covers several points. First, payoff values

for the IPD game must be carefully chosen, since different

values affect how the population evolves. In an extreme case,

the payoff values could prohibit cooperation from evolving.

Second, a randomly mobile population of IPD players is

superior to the round-robin tournament when simulating natural

interactions. The resulting evolution of the population might

be different, but also more realistic. Third, counting the

cooperative branches of the FSMs gives a good idea of how

cooperation evolves within the population. The iterated

prisoner's dilemma game, combined with a Genetic Algorithm,

allows scientists a new method of simulation. "We will be able

to approach genetics and evolution as a theoretical design

problem." [Axelrod 1987, page 41]. Finally, the evolution of

cooperation is sensitive to initial conditions.

Note that the author used the random number generator

provided with the Turbo C and Unix C++ packages. The seed for

the final two programs were kept the same, to produce the same

initial population consistently. Therefore, the results show

that the payoff values can have a drastic impact on the

evolution of cooperation within a population. Also, the random

number generator affects the evolution of cooperation since it

changes the initial population.

Cooperation does evolve in real world circumstances.
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However, the simulations used to show this are far from

complete. This work should be included in future studies of

evolving cooperation.

Allowing the players to randomly move about in a world

presents a few points to keep in mind. First, the size of the

world may have an effect on how the population evolves. Groups

of defectors may be able to hold out on the perimeters of

society, as the "Cellular Automata" program demonstrates. The

defectors influence other squares around them, creating a

"discrete chaos", where a square always gets taken over by one

of its neighbors. Second, barriers are a natural occurrence in

the real world, so they should not be neglected in the

simulated worlds. Separation of peoples allows the evolution

that Darwin and Mühlenbein describe. Walls can be used to

achieve a continent cycle simulation.

Finally, avoidance plays a part in the natural world, as

the paper by Stanley et al describes. This could be done by

giving two players that meet a chance to escape, if one finds

the other player undesirable. For example, a simulation of

different species might include a predator/prey relationship.

A rabbit will run from a fox, and probably will escape a

certain percentage of the time. A simulation where the players

have the capability of avoidance would be a new step forward

in making the simulated world a more accurate reflection of

the natural world. The classic fox/rabbit simulation could be

repeated as a design problem, instead of relying on
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differential equations.

A group project provides another example of a real-life

prisoner's dilemma situation. Suppose that two students get

together to do a project for a class. Each will receive the

same grade, regardless of how much work the individual does.

If one student does all the work, both will benefit. If both

work, the result should be the best possible grade for both

student.

The idea that people in a simulated world will not

interact uniformly can be implemented in a less time-consuming

fashion. For a large world, the time to simulate players

randomly moving about may be prohibitive. In this case, the

programmer could generate tables of the likelihood and

frequency of two players meeting, based on the player's

initial locations. Tables such as these would greatly reduce

the simulation time. On the other hand, the simulation with

randomly moving players would be very interesting if the

players could only mate locally. For example, during the

reproduction and crossover steps, the parents would be chosen

by only looking at a section of the world. Local mating brings

the simulation one step closer to real life. The simulation of

wandering players has a panmictic population, but only because

of the small world size. The next stage of this simulated

world would include a larger area for the players to roam, and

allow only mating with other players in the same neighborhood.

The resulting players of each region should be robust,
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since they are the survivors. However, as Darwin noted,

breeding can lead to over-specialization. An interesting

question would be whether the resultant players are

evolutionary stable strategies (ESS). The author suspects that

populations that do not reach full mutual cooperation are not

ESS. A Tit-For-Tat player should be able to invade these

populations and dominate the gene pool. Within a small number

of generations, the Tit-For-Tat players should overtake the

population and bring the average fitness to the mutual

cooperation level. These ideas lead to future experiments that

could have interesting results. In the next section, the

author discusses one such future study in detail.

Figure 28 shows that the populations do not always

converge to the same average fitness value within 500

generations. This non-convergence is probably due to the

Genetic Algorithm, which attained a local maximum instead of

evolving the population to an absolute maximum. This problem

exists because of reduced variety in the population. The

reproduction operator could be adjusted to kill fewer players,

or the mutation rate can be increased. Either way allows for a

more diverse gene pool, which should solve the problem.

Due to the sensitivity of the experiment to initial

conditions, the comparisons of tournament types should be

taken as example outcomes. Investigating chaos theory, and its

effect on the outcome of this experiment, is the first step in

expanding this study.
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CHAPTER IX: FUTURE STUDY

One example of an application of the IPD game are

distributed computing networks. For example, a simulation

running on a distributed network of computers would depend on

time-stamped messages sent between the nodes. If a computer

receives a message that has a lower time stamp that other

messages already processed, then the computer would need to

backtrack, and redo the work done on any messages timed after

the late message. From a selfish computer's standpoint, it

would be advantageous to spend less time on the simulation

than the other computers on the network. Any late messages

would then be the problem of the other computers, and this one

would not waste time (though it may waste the time of the

others on the network by sending late messages). This is only

one example of how the IPD game applies to the real world.

The "walls" are a good way to implement a network

topology. It would suffer a few disadvantages, however. One

disadvantage is that the paths from one point to another would

be constrained to 2 dimensions. If two paths crossed, it would

be like a street intersection, not like two insulated wires

overlapping each other. An alternate way to have a network

without using "walls" would be to have nodes that the players

would occupy. The players could randomly travel the paths to

jump from one node to another, without concern for other

players on the path. A simulation with this type of
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architecture might be more like the Nowak and May simulation;

where every node either defects of cooperates, and is taken

over in the next round by the strongest neighbor. A defector

moving through this network would spread just like a virus on

a computer network. "Say you have any LAN topology, such as

star, or token ring or whatever. A PD type interaction will

have impact on connectivity and reliability of the system. In

the Urban environment, companies on a sewer network would

cooperate or not with companies downstream or upstream. Again,

it has a system impact. A hypothetical simulation along such

networks will show the applicability of the PD model for the

two areas." [Dr Ragade, 1994, private communication]. The

network topology of walls is outside the scope of this thesis,

however, the author includes this discussion for future study.

The ideas presented herein make a good starting point for

network simulations.

This study was limited by the size of the world studied.

The time constraints are prohibitive when the programmer

expands the world to a greater size. The author had a city

construct in mind for the study, with walls making buildings.

Outside the city, there would be fewer walls, but also fewer

people. It would be interesting to examine evolution in terms

of a city and countryside. The programs can be modified to

make such a simulation, but the computers would take a long

period of time to process such a simulation. Memory

constraints may also be a problem. The data structures,
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however, would only need to have the constants governing

array-size made larger. The functions would need work, though,

to make the simulation run faster.
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APPENDIX : SAMPLE PROGRAM OUTPUT

Output from "Payoffs and Rankings", the 10 test runs for the
5 player case.

Only cases where 2*CC > CD + DC are printed.
All payoff values conform to DC > CC > DD > CD.
Total occurrences = 406

d1 = the average difference between DC and CC values.
d2 = the average difference between CC and DD values.
d3 = the average difference between DD and CD values.

Run #1

pattern # occurrences d1 d2 d3 dc cc dd cd
1 4 2 5 3 66 times 16% 34 58 13 | 124 90 31 18
1 2 3 5 2 53 times 13% 45 47 10 | 118 73 25 15
1 5 2 4 3 18 times 4% 6 27 43 | 96 90 62 18
1 5 3 4 2 138 times 33% 29 21 43 | 115 86 65 21
2 3 1 5 4 9 times 2% 6 119 4 | 161 155 35 30
2 4 1 5 3 121 times 29% 14 77 14 | 124 110 32 18
2 5 1 4 3 1 times 0% 6 56 63 | 136 130 74 11

Run #2

pattern # occurrences d1 d2 d3 dc cc dd cd
1 2 3 4 5 10 times 2% 47 7 55 | 120 72 65 9
1 2 3 5 4 144 times 35% 42 42 17 | 119 77 34 17
1 2 4 5 3 121 times 29% 21 35 36 | 114 92 56 20
1 3 4 5 2 131 times 32% 10 75 20 | 127 116 41 21

Run #3

pattern # occurrences d1 d2 d3 dc cc dd cd
1 2 3 4 5 169 times 41% 21 76 10 | 126 104 28 17
1 3 2 4 5 36 times 8% 27 52 20 | 122 95 42 22
1 4 2 3 5 87 times 21% 22 33 35 | 110 88 54 19
1 4 3 2 5 60 times 14% 45 34 28 | 126 80 46 17
2 4 1 3 5 4 times 0% 5 19 66 | 112 107 87 21
2 4 3 1 5 9 times 2% 31 12 25 | 81 50 38 12
3 4 1 2 5 11 times 2% 5 9 62 | 120 115 105 43
3 4 2 1 5 30 times 7% 29 6 53 | 110 80 73 19
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Run #4

pattern # occurrences d1 d2 d3 dc cc dd cd
2 1 3 4 5 37 times 9% 13 81 14 | 129 116 34 20
2 1 3 5 4 16 times 3% 17 89 5 | 123 105 16 10
2 1 4 5 3 28 times 6% 14 120 5 | 158 144 24 19
3 1 2 4 5 26 times 6% 16 58 12 | 106 89 30 18
3 2 1 4 5 2 times 0% 4 73 39 | 139 135 62 23
3 4 1 2 5 87 times 21% 14 21 54 | 115 101 80 25
4 1 2 3 5 90 times 22% 36 52 13 | 120 83 31 17
4 2 1 3 5 17 times 4% 39 55 33 | 162 122 67 33
4 3 1 2 5 69 times 16% 32 23 31 | 103 71 47 15
5 1 2 3 4 34 times 8% 45 51 4 | 113 67 15 10

Run #5

pattern # occurrences d1 d2 d3 dc cc dd cd
3 2 4 5 1 103 times 25% 21 82 5 | 124 102 20 14
3 2 5 4 1 85 times 20% 45 55 12 | 128 83 28 15
4 2 3 5 1 11 times 2% 4 100 16 | 163 159 58 41
4 2 5 3 1 110 times 27% 31 25 31 | 105 73 48 17
5 2 3 4 1 3 times 0% 6 92 27 | 129 123 30 3
5 2 4 3 1 94 times 23% 10 33 49 | 120 110 77 28

Run #6

pattern # occurrences d1 d2 d3 dc cc dd cd
2 3 5 4 1 10 times 2% 22 12 55 | 109 87 74 18
2 4 5 3 1 24 times 5% 17 6 67 | 125 108 101 33
3 2 4 5 1 55 times 13% 32 42 13 | 107 74 32 18
3 2 5 4 1 137 times 33% 29 28 36 | 113 83 55 19
4 1 2 5 3 11 times 2% 6 117 5 | 155 149 31 26
4 1 3 5 2 167 times 41% 23 75 12 | 128 104 29 17
4 2 3 5 1 2 times 0% 47 60 10 | 131 83 23 13

Run #7

pattern # occurrences d1 d2 d3 dc cc dd cd
2 1 3 5 4 21 times 5% 30 57 4 | 102 71 14 10
2 1 4 5 3 2 times 0% 10 30 3 | 48 38 7 4
2 1 5 4 3 10 times 2% 33 88 3 | 134 101 12 8
3 1 2 5 4 111 times 27% 33 52 13 | 118 84 32 18
3 1 4 5 2 1 times 0% 26 103 15 | 186 160 57 42
3 1 5 4 2 10 times 2% 20 82 8 | 128 107 25 16
3 2 1 5 4 174 times 42% 27 24 41 | 114 87 62 21
4 1 2 5 3 17 times 4% 7 69 29 | 132 124 54 25
4 1 3 5 2 6 times 1% 6 65 19 | 105 99 34 15
4 1 5 3 2 54 times 13% 12 105 8 | 146 133 27 19
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Run #8

pattern # occurrences d1 d2 d3 dc cc dd cd
5 3 2 1 4 406 times 100% 26 50 24 | 120 94 44 19

Run #9

pattern # occurrences d1 d2 d3 dc cc dd cd
2 4 1 3 5 23 times 5% 7 119 7 | 153 146 26 18
3 4 1 2 5 100 times 24% 18 75 10 | 123 104 29 18
3 5 1 2 4 85 times 20% 36 57 13 | 124 88 30 17
4 5 1 2 3 53 times 13% 34 39 18 | 113 79 39 20
5 4 1 2 3 21 times 5% 32 30 23 | 97 65 34 10
5 4 2 1 3 107 times 26% 25 21 45 | 113 88 66 20
5 4 3 1 2 17 times 4% 16 5 73 | 131 114 109 36

Run #10

pattern # occurrences d1 d2 d3 dc cc dd cd
4 2 3 1 5 83 times 20% 15 96 8 | 137 121 25 17
5 2 3 1 4 323 times 79% 28 38 28 | 116 87 48 19

Figure 29 - Test Runs from "Payoffs and Rankings"
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Output from the first run of “Payoffs and Rankings”

Number of
FSM code outcomes by type

Name i 0 1 2 3 4 5 6 7 dc cc dd cd
A d7b7e5f0a64565a367d2ea58b8a24771ac 256 046 156 042
B 392fbe049cb2947b07dc2ebccfe7fc1aa8 050 200 038 212
C beb1a00441a191c70a5bf70c27fa4e2181 096 188 096 120
D 2beb886353352defd7437fd00207b31370 132 118 122 128
E 80e26f853136e0e854eade70f5441e8082 184 104 144 068
F 55224cf4a57204168ae3491b6abafd0091 148 122 132 098
G fbd6ecddd6b010f869192c50ca0a4f8fa3 106 178 082 134
H 46e9e93d62c0094cd4ed94612572784598 220 068 166 046
I 7eb3325c01ad20b595291e10707bf47d5e 114 150 124 112
J 2d019364d08e1f2b348ea9beb70742bde8 094 162 110 134
K 108b9738b37cebed8cd19a147aa7b29b45 096 182 064 158
L 36bf67841d9e82a044682651c794e164d7 192 088 162 058
M db7d291c01f15f831a0ef2f25e176bde24 114 150 106 130
N 11613922efcda989558c900a3ef9cf6c1b 140 140 112 108
O e0bdc1c1b954d7d47202f3dbaa197ec8b1 130 150 092 128
P 57b0232281d28d7b7f39d675fc816791fe 228 068 134 070
Q 2f23946b4f8c66f51a5b1269523e56d255 140 130 142 088
R 01876f8dcc36ec57b854dfea7049f86513 164 114 138 084
S c2e79611946193418c4cbbdc8b7e38a0b9 278 026 111 024
T 0e9ccb2eaab12be9ef10fc713995c6eede 068 162 084 186
U 5bf618533770d7366dc5e5a698534ff078 116 166 106 112
V fa2c01acae619ff189c8c90ba9995de389 022 228 028 222
W 6951f7048d94b3d34e0ecba0b79f348152 092 152 084 172
X b4c3f7c054254b642828621e6d0ccc5357 208 082 164 046
Y dc4e1cca719609f1414b369e783f19fc8d 098 156 108 138
Z f6e272dc33b54c68ccb00b4c7bfbdc05db 084 194 088 134

AA ce35245bb202804beb6887cd5389b4d17b 084 160 082 174
AB 4fdee482a55efe572db00bdfcdac6dc228 066 208 070 156
AC dd213b6e27d1cd6e3a7a2786ffe8183c8b 040 216 052 192
AD beea1bb344f6c2dfa8d48e21fff1f14aa4 074 170 074 182
AE f0d6ec47a91c034f189449d11d81d9d665 206 094 122 078
AF 0d2c2249b1153507ffcec32bd4ae557458 090 154 088 168
AG 9e4e26d3eb0cfecd885cc66059fbc153a1 080 166 078 176
AH 57e0d7284ffd743326170de55ec38524bd 230 064 150 056
AI c1ef95270bc1c88f261033b1273b07d625 216 066 166 052
AJ 0c874994bae8c937d061a12f6a7ca7d2c1 060 176 078 186
AK 3ad2c87b2ea92cc22637148e68cd5c1e36 110 158 104 128
AL 2f00179e88e34b30b8638bbe548694abf5 074 170 068 188
AM 167bf721999e8984618be6a09fd3d4c5ce 158 130 092 120
AN 491e754aa1f5f564e21745e3aa532e2fbb 106 138 102 154
AO 77a70cc64e443ce9bceddee99688e58448 132 146 124 098
AP dc74efea628be3cf34c83e33d7a3ad1a20 058 200 068 174
AQ f750fade2cd83d89e6184aaa8177164043 236 060 154 050
AR 4ae5c18d794410eb83e4fe5c3a67aca74e 082 188 104 126
AS ae7011ffd380570d55193747985b6ebd51 126 162 098 114
AT 8c7408ec03d9a2996d9bc4f8a341c822d0 088 160 084 168
AU 237d0217ac6fb678f591f720854e30f4a3 168 110 132 090
AV 6c586efabe1ba2f9238492c0bfa58befeb 088 156 098 158
AW 63cc38dc0122ff6a72bbf1f820e4d6f72c 136 134 140 090
AX ea8bf2cbd767aad641f82a1fe85e56ab53 000 252 000 248

Table 7 – The randomized player FSMs.
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