

MOBILE FLEET APPLICATION USING SOAP AND SYSTEM ON
DEVICES (SYD) MIDDLEWARE TECHNOLOGIES1

S. K. Prasad2, M. Weeks2, Y. Zhang2, A. Zelikovsky2, S. Belkasim2, R. Sunderraman2, and V. Madisetti3
e-mail: mweeks@cs.gsu.edu

Computer Science Department
Georgia State University
Atlanta, Georgia 30303

United States

1 This research was funded by State of Georgia's Yamacraw Embedded Software research contract #BLA42 and #CLH49.
2 Computer Science Department, Georgia State University
3 Electrical and Computing Engineering, Georgia Institute of Technology

ABSTRACT
This paper presents a fleet management application with
heterogeneity of devices and data, database
synchronization, group transactions, peer-to-peer
computing, and mobility support. We simulate a delivery
service's fleet of trucks with PCs and hand-held devices,
and describe how the system works together. To send
messages between devices, we use the Simple Object
Access Protocol (SOAP), allowing heterogeneous devices
to communicate as peers. We examine current scenarios
of our system, and discuss future enhancements. The ad-
hoc nature of the solutions based on the existing
technologies has led us to design a comprehensive
middleware, namely, System on Devices (SyD), which
we also describe briefly. SyD enables rapid development
of collaborative applications, such as a fleet system, over
heterogeneous, independent, data stores, devices, and
wired and wireless networks, including those involving
the web services.

KEY WORDS
Handheld Devices, Middleware, Embedded Software,
Persistent Mobile Objects, System on Devices, SyD.

1. INTRODUCTION
Limitations of Current Technology: The current
technology for development of a database application
over a heterogeneous set of wired or wireless devices and
networks has several limitations. Developing an
application requires explicit and tedious programming on
each kind of device, both for data access and for data
communication. The application code is governed by the
type of device, data format, and the network. The
database server is typically a centralized logical entity
providing only a fixed set of database services, with little
flexibility for user-defined ad hoc services or the ability
of user applications to dynamically configure a collection

of independent data stores. Applications running across
mobile devices are complex because of the lack of
persistence of their data due to their weak connectivity.

Truck Fleet Application: In this system, a user may
connect through the Internet to the Web and Data Center
(WDC), request delivery of a package, and give
information pertaining to the package, such as where the
package can be picked up, its priority, and where it
should be delivered. The WDC passes this on to a depot,
which schedules a pick-up. A truck will arrive according
to the schedule and take the package to its next stop. The
trucks, depots and WDC form a heterogeneous network
with different types of communications links between
them. Each entity has its own database of varying
capacity [1-4]. A truck’s handheld device (HHD) holds
the most current information about the packages, such as
the package ID, its current location, and where it needs to
go. A depot keeps similar, but more involved data, such
as which truck has the package, the status of the truck
(location, speed, heading), and where the package
ultimately needs to be delivered.

We present the architecture of the fleet system as a
hierarchy (Figure 1). The user connects to the Web and
Data Center, which provides the user interface and serves
as a repository for retired records. That is, once a package
has been delivered, the trucking company will want to
keep information about that package for a time, so the
WDC acts as a backend database. The WDC connects to
depots, and passes along information, such as the record
for a package. Depots have wireless connections to their
respective trucks, and the trucks can communicate with
each other directly through their wireless devices.

Technical Merits: Following are the key technical
aspects of our fleet management implementation: (i)
Heterogeneous device, data format and language support
(ii) Peer-to-Peer computing over dynamic groups (iii)
Group transactions: Autonomous Database

Synchronization based on triggering events; group
querying, and (iv) Mobility support through proxies and
directory service.

Figure 1. Communications in the fleet system

In this paper, we implement the fleet system by extending
SOAP (Simple Object Access Protocol), a lightweight
protocol that can be used to invoke a particular database
procedure or query [5-6].

Currently, the database interactivity and collaboration can
be achieved by rigorous application programming using
existing middleware and database technologies [7]. One
of the tasks of such an application is to interact with multi
and mobile databases [8]. Due to the special conditions in
the environment, many issues and problems need to be
solved. For example, the networks may be temporarily
disconnected and the communication bandwidth may be
limited. Synchronization and update are also more
difficult with mobile databases. There is a considerable
effort that needs to be exerted to program the various
databases and introduce the notion of collaboration and
interactivity as outlined above.

Here, we identify several major technological issues that
have not been addressed in the current existing systems.

1. Every station can act as a server and/or a client.

2. There is no single global schema. Each client has
his own schema that is available to any other client. For
security purposes, a client may selectively make portions
of their schema available.

3. There is no concept of a single centralized or
federated server. The transactions are with respect to an
ad-hoc network that is created by establishing links
among the clients as needed. These links may last only
for the duration of a session or even a transaction.

4. Operations supporting cooperation among stations
are provided, such as link operations.

5. The working environment is mobile and composed
of weakly connected networks.

6. Applications can be shared by stations
(downloaded, used, then deleted).

7. Identities can be established by users, giving as
much (or as little) information as they desire.

We explain how these issues have been addressed in our
fleet implementation by employing existing technologies.
The ad-hoc nature of these solutions has led us to design a
comprehensive middleware, namely, System on Devices
(SyD). SyD enables rapid development of collaborative
applications over heterogeneous data stores, devices, and
wired and wireless networks, including those involving
the web services.

This paper is organized as follows. Section 2 introduces
the truck fleet application. Section 3 discusses its design
and implementation. Section 4 briefly describes the
System on Devices middleware architecture. Finally,
Section 5 concludes the paper.

2. THE TRUCK FLEET APPLICATION
For our truck-fleet application, there are several scenarios
that we examine in this paper. First, we present normal
operations, which involves synchronization across
autonomous databases. Next, we look at what happens if
a traffic accident occurs. Following this is a description of
the map utility, which demonstrates data collection from
distributed sources.

2.1 Normal Operations
To start a delivery, a user would contact the Web and
Data Center. The primary function for the WDC is to
interface with the user, providing the shipping company's
home-page, and allowing the user to order deliveries and
track packages. Records for packages are stored here and
"retired" after delivery. When a delivery is ordered, the
WDC passes it on to a depot.

Every depot has a number of trucks associated with it.
The depot's duties are 1) to store packages physically, as
well as package information, until loaded onto trucks, 2)
schedule the routes for the trucks to take, 3) serve as a
broadcaster to trucks for traffic information, 4) provide
detailed package information upon request, and 5) update
WDC with all packages' information at regular intervals,
such as at completion of a schedule.
The truck (with an HHD) picks up packages from a
source and delivers them to a destination. However, a
truck does not necessarily deliver the package directly; a
package may have several stops before reaching its final
destination. Since every truck is associated with a depot,
its depot will make a schedule for it before the truck sets
out.

A user may decide to check on his package. He would
contact the WDC, and access information based upon the

package ID number. If the priority for the package is high
enough, the WDC may contact the depot in charge of the
package, which in turn contacts the truck. The truck
responds back with the latest package information, as
well as schedule information, such as the truck's current
location, it's current (average) speed, the number of stops
before the package is delivered, and any other
information that could be used to predict the actual time
of arrival.

2.2 The Accident Scenario – Peer-to-peer computing
Suppose one of the trucks unexpectedly becomes
disabled, and needs help off-loading its cargo to another
truck. This scenario demonstrates peer-to-peer computing
in a mobile environment among a dynamically formed
group of trucks. First, the disabled truck calls out to other
trucks in the area to come help it. Then it decides which
truck will help. In determining this, two parameters are
used: slack time, the amount of free time in the called
truck's current shift, and emergency time, the amount of
time needed to finish the work left on the disabled truck.

The rules for action are as follows. The disabled truck
collects information from all the other trucks, including
slack time and position. Then it calculates the travel time
for each of the other trucks to reach its current location.
The disabled truck determines which trucks are available
to provide help according to the condition: (emergency
time + travel time < slack time). If more than one truck is
available, the one with the maximum (slack time – travel
time - emergency time) will be chosen.

The disabled truck then informs the chosen truck. It will
update its slack time and add the location of the accident
to its schedule. Finally, it will add the disabled truck's
delivery schedule to its own.

The technical implementation of these two scenarios is
described in section 3 below. We are currently working
on several enhancements, including optimization of the
routing, updating the trucks' schedules due to traffic
conditions, updating the trucks' HHDs remotely, and a
truck rendezvous scenario. Currently, estimates of the
delivery time are based on the location of a package and
the distance between the source and the destination. More
accurate delivery time estimations will depend on traffic
updates, route selection and delivery sequence [9-13].

Map – Group Querying: The map is a tool that tracks
(and displays) the location of all trucks in the fleet. Each
depot maintains the position of each truck within its area
and updates the corresponding coordinates (Figure 2).

Figure 2. Map of the Truck Locations

Currently, the truck's location displayed on the map is the
location at which it last delivered a package. Upon
delivery of a package, the truck sends a message to the
depot relaying the status of the package. The depot then
uses this information to update the map.

The map is accessible through the WDC allowing
customers to view the position of the delivery trucks
within there area. The map also displays the direction in
which each truck is heading, along with the estimated
time to deliver the next package.

3 TRUCK-FLEET IMPLEMENTATION IN
SOAP – HETEROGENEITY SUPPORTED
This section details the truck fleet's implementation. As
with any problem, multiple potential solutions exist. We
describe here how the fleet application is implemented
using the SOAP messaging system.

SOAP, “Simple Object Access Protocol”, is a lightweight
communication protocol specification for invoking
methods on servers [5, 6]. It allows communication
between applications via HTTP/XML. SOAP is neither
tied to any component technology nor to any
programming language. Like its name implies, it is simple
and extensible.

On the client side, the software does not connect to
database directly. We use the server side to connect to the
database and return the results to client side via SOAP
packets. Therefore, we need to write and deploy the
SOAP service, and then write a SOAP client to
communicate with the SOAP server.

Figure 3. Fleet Architecture based on SOAP

In our fleet application each truck, depot and WDC act as
both SOAP clients and servers. SOAP services are
deployed in each truck, depot and WDC. When one entity
needs to communicate with another entity or entities, it
sends a SOAP request to the destinations. These requests
should contain the host name and the SOAP method that
needs to be invoked. Once the destination server receives
the above information, the destination SOAP service will
invoke appropriate methods and send the results back to
the requester. For example, when a customer checks the
status of his order, SOAP communication occurs as
follows. First, the customer program sends a SOAP
request to the WDC asking for the status of customer
orders. Upon receiving the request, the WDC's SOAP
server invokes the method requested by the customer
program, performs database queries locally, and sends the
results back to the customer program. Figure 3 shows
how depots, WDC and trucks communicate with each
other. In the figure, each entity has both a SOAP client
(SC) and a server (SS), which interface with the database
server (DBS), and the database itself (DB).

The customers' login web page is shown in Figure 4,
simulated with the Palm OS. The client- side program
will check the customers’ identification by obtaining
service from server side, and return the appropriate
screen.

4. SYSTEM ON DEVICES MIDDLEWARE
This paper shows some of the problems inherent in a
distributed system spanning different devices. To make
the application development process easier, our research
group is actively developing a middleware technology
called System on Devices (SyD). SyD is a new
technology that addresses the key problems of
heterogeneity of device, data format and network, and
that of mobility [1-4].

Figure 4 - Customers' Login Web Page on Palm
Emulator

The System on Devices is a middleware to enable rapid
implementation of applications that need a collection of
heterogeneous, independent data stores to collaborate
with each other. Each individual data store in SyD may
be a web service, a traditional database such as relational
or object-oriented, or may be an ad-hoc data store such as
a flat file, an EXCEL worksheet or a list repository. These
may be located in traditional computers, in personal
digital assistants (PDAs) or even in devices such as a
utility meter or a set-top box. These databases are
assumed to be independent of each other, i.e. they do not
share a global schema. The databases in SyD co-operate
with each other to perform interesting tasks, and we
envision a new generation of applications to be built
using the SyD framework. The SyD architecture is
captured in Figure 5.

The SyD architecture has three layers. At the lowest
level, individual data stores are encapsulated by SyD
Client Objects, referred to as SyDCOs. These client
objects export the data that the client devices hold along
with methods/operations that allow access as well as
manipulation of this data in a controlled manner.

At the middle layer, there is SyD middleware, a logically
coherent collection of services, APIs, and objects that
facilitates the execution of application programs. At the
highest level are the applications themselves that are
independent of device, database and network. They rely
on the directory services maintained by the SyD
middleware. These applications include instantiations of

SyDCOs, SyDApp objects that are aggregations of
SyDCOs, and SyDMW objects. The three-tier
architecture of SyD enables applications to be developed
in a flexible manner without knowledge of device,
database and network details.

SyD software technology is characterized by the
following:

1. Ordered stores of data, be they formal databases
or ASCII lists.

2. SyD middleware (SyDMW) is responsible for

making software applications (anywhere) aware
of the named objects and their methods/services,
executing these methods on behalf of
applications.

3. SyD Applications (SyDApps) are written

independent of the data formats or location of
the information store.

SyDCO

Ordered Data
On PDA’s
Oracle Lite

SyDCO

Ordered data
On PC’s Outlook

SyDCO
--

Ordered data on
A settop box

SyD Clientware SyD Clientware SyD Clientware

SyDApp

Published Library of SyDCOs

SyDAppO

SyD Middleware (SyDMW)
SyDMWO

Figure 5. Architecture of SyD

SyDApps are thus truly portable, network and database
independent, and are able to operate across multiple
networks and multiple databases, relying on the SyDMW
to provide the supporting services that translate the
SyDApps code to the correct drivers, for both
communications and computing.

SyD Infrastructure: The SyD infrastructure includes
two major components: the SyD middleware and the SyD
clientware. The responsibilities of SyD middleware
include:

1. Directory and Ad-Hoc Group Management services:
The SyD middleware maintains a directory of active
devices, their proxies (if any), active applications, active
groups of devices/users, etc. The middleware is also
responsible for maintaining a directory of SyDCOs that

have been published by the individual devices, as well as
the SyD middleware objects (SyDMWOs) that may
provide domain-specific services, such as financial
services.

2. Communication Services: SyD Middleware is
responsible for providing communication services across
devices. Services such as broadcast and multicast to a
group of devices are included in these services.

3. SyD Quality of Service Management: SyD middleware
provides communication specific QoS support, such as
reliability, quorum, delay, cost, fault-tolerance, and real-
time constraints.

4. SyD Data Services: The middleware provides data
services that include global querying and update of data
stores managed by the SyDCOs.

The SyD clientware, which manages the devices, is
responsible for creation and management of SyDCOs and
for providing the execution engine for the SyDCO
methods. SyDCOs are defined and implemented by the
vendors of the devices or by developers specializing in
device programming.

We are in the process of implementing SyD kernel and
redeveloping the fleet system using the middleware
primitives. We expect that web-based collaborative
applications, such as this truck fleet management system,
will be easier to develop and port across heterogeneous
devices.

5. CONCLUSIONS
A mobile fleet application system running on different
hosts (workstations) and hand-held devices has been
implemented as a distributed mobile system on a wireless
network. The Web and Data Center, depots and trucks are
the three major components of the mobile fleet
application system. Various triggered events such as truck
accident and successful delivery are synchronized for
correctness and consistency of the system.

In the future, more complex functions will be
implemented, in conjunction with the System on Devices
middleware. For instance, we plan to implement REC
(Remote Execution Code) in the near future [14].

ACKNOWLEDGEMENTS
We would like to recognize and thank all of the graduate
students who have made this work possible: Junfang Lei,
Bing Liu, Janaka Balasooriya, Hui Liu, Pooja Bhatia,
Arthi Hariharan, Bo Jin, and Yuanchen He.

REFERENCES
[1] M. Weeks, Y. Zhang, et al., "Mobile Fleet Application
Based on SyD Technology," Proceedings of Yamacraw Industry
Advisory Board Conference, April 2001.

[2] Vijay Madisetti, Sushil K Prasad, et al., "System of
Databases (SyD): An Enabling Technology for Programming
Applications on Multiple Mobile Data-stores," Utility Patent
filed April 23, 2002.
[3] V. Madisetti, S. K. Prasad, et al., "System of Databases
(SyD): A Model with Coordination Link Primitives and a
Calendar Application," Proceedings of Yamacraw Industry
Advisory Board Conference, April 2001.
[4] Madisetti, R. Sunderraman, et al., "System of Database
(SyD): Architecture, Global Queries, Triggers, and Constraints,"
Proceedings of Yamacraw Industry Advisory Board Conference,
April 2001.
[5] SOAP: Simple Object Access Protocol, W3C
recommendation, http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/.
[6] SOAP version 1.2 working draft, Editors: Martin
Gudgin (DevelopMentor), Marc Hadley (Sun
Microsystems), Jean-Jacques Moreau (Canon), and
Henrik Frystyk Nielsen (Microsoft Corp.) July 9th, 2001
http://www.w3.org/TR/2001/WD-soap12-20010709/
[7] U. Dayal and H. Hwang. View definition and
generalization for database integration in MULTIBASE:
A system for heterogeneous distributed databases. IEEE
Trans. Software Engineering, SE-10, 6, 628-644, 1984.
[8] E. Pitoura and B. Bhargava. A Framework for
Providing Consistent and Recoverable Agent-Based
Access to Heterogeneous Mobile Databases. ACM
SIGMOD Record, 24(3):44--49, September 1995.
[9] G. Reinelt, The Traveling Salesman: Computational
Solutions for TSP Applications, Springer Verlag, Berlin,
Germany, 1994.
[10] C. Malandraki and M. S. Daskin, Time Dependent
Vehicle Routing Problems: Formulations, Properties and
Heuristic Algorithms, Journal of Transportation Science,
26 (1992), pp. 185-200.
[11] M. Gendreau, F. Guertin, J.Y. Potvin and R. S'eguin,
"Neighborhood Search Heuristics for a Dynamic Vehicle
Dispatching Problem with Pick-ups and Deliveries",
Technical Report CRT-98-10, Centre de recherche sur les
transports, Université de Montréal, 1998.
[12] S. Prasad, et al., "Mobile Fleet Communication
System for Multiple Mobile Data-stores," Utility Patent
filed April 23, 2002, Application Number 10/131,682.
[13] S. Prasad, et al., "Mobile Data-stores Enabled with
Coordination-Link Primitives and a Calendar
Application," Utility Patent filed April 23, 2002,
Application Number 10/131,681.
[14] James W. Candler, Prashant C. Palvia, Jane D.
Thompson and Steven M. Zeltmann, "The ORION
Project: Staged Business Process Reengineering at
FedEx", CACM, Vol.39, No. 2, February 1996, pp. 99-
107.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/WD-soap12-20010709/

