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ABSTRACT

The problem of speech recognition is addressed using the wavelet
transform as a means to help match phonemes from a speech sig-
nal. This work uses a template of pre-recorded, wavelet-transformed
phonemes as its basis for comparison. This application illustrates
how wavelets can be used for better accuracy in speech recognition

�
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1. INTRODUCTION

Speech recognition is currently used in many real-time appli-
cations, such as cellular telephones, computers, and security
systems. However, these systems are far from perfect in cor-
rectly classifying human speech into words. Speech recog-
nizers consist of a feature extraction stage and a classification
stage. The parameters from the feature extraction stage are
compared in some form to parameters extracted from signals
stored in a database or template. The parameters could be fed
to a neural network or hidden Markov model as well [1].

In this paper we use the wavelet transform with a voice
recognition system. Because speech analysis is a very com-
plicated task, the analysis is kept as simple as possible while
trying to arrive at the correct conclusion. By analyzing and
transforming the speech signal, a specific value can be calcu-
lated to determine the phonemes said by the user. The goal
of this paper is to develop a speech recognition algorithm that
uses the wavelet transform to extract and represent incoming
speech signals as a basis for an accurate method of identifying
and matching these signals to signals in a template.

Section 2 discusses the speech recognition background.
Next, section 3 details our approach. Section 4 presents the
results, and section 5 contains our conclusions.

2. BACKGROUND

Problems in recognizing speech include noise, speaker vari-
ations, and differences between the training and testing en-
vironments, such as the microphones used [2]. One way of
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dealing with this is to adapt the recognition system’s inter-
nal model (i.e. Hidden Markov Model weights). Another
is to normalize the new speech to conform with the training
data. Variations with different speakers mean that speaker-
dependent systems usually do better than speaker-independent
ones, since the former uses the speaker for training.

Dynamic Time Warping, or a similar algorithm, is neces-
sary because of the non-uniform patterns of different speech
signals. Also, different speakers will more than likely say the
same words at different rates. This means that a simple lin-
ear time alignment comparison, such as the root square mean
error, cannot be used efficiently.

One way to do speech recognition is phoneme-based in-
dexing [3]. A phoneme is a basic sound in a language, and
words are made by putting phonemes together. One method
is to consider the triphone, a set of three phonemes where a
phoneme is considered with its left and right neighbors [4].
Therefore, this method identifies speech based on its compo-
nent phonemes.

We are not trying to match a spoken word to a word list,
but rather output the phonemes detected. For example, if the
user says the word “pocket”, our system should output “p”,
“ah”, “k”, “eh”, “t”.

Our approach includes the wavelet transform, shown in
figure 1 [5]. This figure shows that a 1-dimensional signal
is broken into two signals by low-pass and high-pass filters.
The downsamplers (shown as an arrow next to the number
2) eliminate every other sample, so that the two remaining
signals are approximately half the size of the original. As this
figure shows, the low-pass (approximate) signal can be further
decomposed, giving a second level of resolution (called an
octave). The number of possible octaves is limited by the size
of the original signal, though a number of octaves between 3
and 6 is common.

Wavelets express signals as sums of wavelets and their
dilations and translations. They act in a similar way as Fourier
analysis but can approximate signals which contain both large
and small features, as well as sharp spikes and discontinuities.
This is due to the fact that wavelets do not use a fixed time-
frequency window. The underlying principle of wavelets is to
analyze according to scale.



Fig. 1. The Discrete Wavelet Transform

3. OUR APPROACH

We are doing phoneme matching, for a speaker dependent
system. The algorithm to classify speech into words is as
follows:

� Read-in signal for analyzing and matching

� Eliminate any silence of the signal

� Normalize signal around x-axis

� Normalize amplitude values

� Use wavelet transform (Daubechies 8) to obtain five oc-
taves of the same signal

� Compare this signal to template by calculating errors
between them

� Output the best match

After reading in the signal, the first step is to normal-
ize the incoming signal around the x-axis and in amplitude.
Normalizing around the x-axis occurs by finding the median
value of the entire signal, which is the DC component of the
signal. This value is then subtracted from the entire signal
which results in moving the signal down around the x-axis.
The normalization of the amplitude is achieved by subtract-
ing the minimum value of the signal from the entire signal
then dividing the signal by the maximum value of this sig-
nal. The next step is to eliminate silence by removing any
parts of the signal whose amplitude value falls under a certain
threshold. Then the wavelet transform is used to produce the
signal’s decomposition into five octaves.

Next, the classification stage begins. This can be done
using a variety of methods, and we chose template matching
since it is an easy, direct technique, good for showing our
concept. The template signals were compared to the input
signal. For this paper, one voice was used in the template
for each word. To perform matching, we used correlation.
The signals used in the template all followed the algorithm
presented above.

4. RESULTS

Our experiment used two methods for speech recognition.
First, we used correlation, to give us a simple method to com-
pare against. Next, we used the DWT with correlation, and
found that there was an improvement. The DWT naturally
takes some warping into account, since it uses different scales
of the input data. That is, a difference at one scale becomes
half as large at the next.

Results were found for using the discrete wavelet trans-
form on each of the five octaves produced. Thirty six phonemes
were chosen as the template. Each phoneme was recorded five
times and each of these was part of the test. There are a total
of 175 possible correct matches for each experiment, five for
each phoneme recorded. The input to the experiments is the
phoneme that is to be recognized, while the output is a list of
possible matches with the corresponding correlation values.

Figure 2 shows the number of correct matches for each
octave as well as for the non-discrete wavelet transform ex-
periments. “No DWT - 1st” represents the experiment which
used the first group of samples of the input signal for match-
ing, and “No DWT - 2nd” represents the experiment of using
the middle group of samples. The reason for two different
tests is that the first “No DWT” results were very poor, so
we tried using the samples in the middle to see if this would
improve performance. It did not.

As seen on the chart, use of the discrete wavelet transform
has improved the number of correct matches from 4 to 30, at
the very least. The greatest improvement is noticed in the first
through third octaves using the approximation coefficients as
the input to the wavelet transform. There is a marked decrease
in the amount of correct matches as the number of octaves
increases. There are 35 phonemes in our template, and the
test data has 5 recordings for each phoneme. Therefore, the
number of phoneme matches are out of a possible 175. The
highest number of top matches was found to be from using
the second octaves detail coefficients, with a 77 out of 175 or
57% correctness.

Fig. 2. Number of Correct Matches



Since our algorithm gives a value matching the input to
each phonme, we also looked at whether the correct phoneme
appeared in the top 5 or 10 matches. The greatest number
of phoneme matches found in the top five was from the first
octave approximation coefficients, which resulted in a cor-
rectness rate of about 123 out of 175 or 72%. For matches in
the top 10, the highest number of matches is from using the
third octave approximation coefficients. Not using the dis-
crete wavelet transform in the feature extraction stage pro-
duced the lowest results. The highest number of phoneme
matches in the top ten was from using the third octaves ap-
proximation coefficients, with a correctness rate of 150 out of
175 or about 86%.

From the results, phonemes which fall into the group of
plosives were the most correctly matched. Examples of plo-
sive phonemes are the ’b’ sound in the word ’bad’ and the ’p’
sound in the word ’pad’. Other groups of phonemes which
faired well overall were the clipped (e.g. ’a’ as in apple), ex-
tended (e.g. ’ee’ as in me), dipthong (e.g. ’i’ as in eye), and
syllabic (e.g. ’h’ as in her). The unvoiced group (e.g. ’ch’ as
in cheese) had the least amount of matches throughout all of
the experiments. One reason for different groups of phonemes
matching better than others could be due to the phonemes
lengths. All phonemes have a different length. Those closer
in sound tend to have a length closer to each other. Normal-
izing the signals to all be around the same length may lose
some data which would be missed for the classification stage.

Table 1 shows the groups of speech, and the number of
correct matches for each octave using the approximation and
detail coefficients as input to the classification stage. The
numbers next to each of the phonemes represent how many
times that particular phoneme was recognized out of five at-
tempts.

The best all-around results seem to come from using the
third octaves approximation coefficients for the classification
stage. This observation is not only based on a high amount of
correct matches but also from the fact that using this octave
also results in less time for checking for a match. This is due
to the original signal’s coefficients being almost halved for
each octave that is produced by the wavelet. Obviously, not
using any method of feature extraction showed the poorest
results of all with hardly any correct matches.

The highest percentage of correctness for the approxima-
tion coefficients occurs for the plosive and dipthong groups
at 44.7% and 43% respectively. The lowest occurs for the un-
voiced group at 24%. For using detail coefficients, the highest
percentage of correctness is for the clipped phoneme group
at 38.4%. The lowest percentage is for the plosive group at
16.7%.

The drop-off in correct matches after the third octave can
be explained by the loss of too much frequency information.
Because the wavelet transform smoothes out the frequency
values, as more and more octaves are generated, the signals

Octave Octave Octave Octave Octave
1 2 3 4 5

A, D A, D A, D A, D A, D
Clipped

’a’ 1, 2 1, 2 2, 3 0, 2 0, 0
’e’ 3, 0 3, 0 3, 0 1, 2 0, 2
’i’ 1, 3 1, 2 2, 2 1, 1 0, 1
’o’ 3, 3 3, 3 3, 3 3, 3 2, 2

’uu’ 3, 1 3, 4 3, 2 2, 2 0, 3
Extended

’er’ 0, 1 0, 0 1, 1 0, 2 0, 0
’ee’ 2, 1 2, 0 1, 3 1, 1 0, 0
’uh’ 4, 0 4, 2 4, 3 4, 2 0, 4
’oo’ 3, 1 3, 1 4, 1 3, 3 2, 1

Dipthong
’ai’ 1, 4 1, 0 1, 0 0, 0 0, 0
’ay’ 4, 1 4, 2 4, 3 4, 4 1, 1
’oe’ 3, 1 2, 2 2, 2 3, 1 0, 0
’ow’ 3, 0 3, 0 3, 2 3, 1 1, 2

Plosive
’b’ 2, 1 2, 1 2, 1 1, 1 0, 2
’p’ 5, 1 5, 2 5, 0 5, 1 4, 0
’d’ 2, 1 2, 3 2, 3 1, 1 0, 2
’t’ 0, 0 3, 0 4, 0 4, 0 4, 0
’k’ 1, 0 1, 0 1, 0 1, 0 1, 0
’g’ 2, 1 2, 1 2, 1 2, 1 1, 1

Voiced
’th’ 3, 3 3, 3 3, 2 3, 3 1, 3
’v’ 1, 0 1, 0 1, 0 1, 3 0, 2
’j’ 2, 1 2, 1 2, 2 2, 1 2, 0
’z’ 1, 2 2, 5 3, 1 3, 3 2, 1

Unvoiced
’f’ 1, 1 1, 1 1, 1 1, 1 1, 1

’ch’ 0, 0 0, 0 0, 0 0, 0 1, 0
’sh’ 3, 1 3, 0 0, 3 0, 0 0, 0
’s’ 1, 2 3, 4 3, 2 3, 1 2, 1

Syllabic
’h’ 1, 1 1, 1 1, 1 1, 1 1, 1
’l’ 0, 0 0, 2 0, 0 0, 0 0, 0

’m’ 2, 1 1, 0 2, 3 3, 0 2, 1
’n’ 0, 0 0, 0 0, 0 0, 0 0, 0

’ng’ 0, 0 0, 0 0, 0 0, 0 0, 0
’w’ 4, 0 4, 1 2, 0 0, 4 0, 1
’y’ 4, 2 4, 3 2, 4 1, 0 0, 1
’r’ 5, 5 5, 0 5, 1 4, 3 2, 2

Table 1. Correct matches for each octave using approxima-
tion (A) and detail (D) coefficients



generated by the transform are smoother.

5. CONCLUSIONS

The approach taken in this paper is to use the wavelet trans-
form to extract coefficients from phonemes and to use cross-
correlation to classify the phoneme. Cross-correlation mea-
sures the similarities between two signals. Normalization of
the amplitudes and frequencies are used. Silence is eliminated
from the signal as well. A Daubechies 8 wavelet is used to ob-
tain five octaves of each signal. A template of each phoneme
trying to be recognized is used in the matching process. The
system is speaker dependent to make things simpler.

The results show that using the wavelet transform im-
proved the accuracy in correctly identifying the phonemes
over not using any method for feature extraction. The results
also show that using the approximation coefficients to gener-
ate octaves in the wavelet transform give better accuracy than
using the detail coefficients. The first three octaves give the
best results, while the accuracy of using the fourth and fifth
octaves declines.

The results demonstrate that it is possible to build a speech
recognition engine using the wavelet transform and wavelet
coefficients. Template matching was used for an easily de-
signed way to compare and get results but would not be the
best or most reliable method to use for building a recognition
engine.

Future work includes first differentiating the type of phon-
eme such as voiced, unvoiced, or transitory and possibly tak-
ing a different action or evaluating a different octave of the
signal depending on the type [11]. Since the approximation
coefficients seem to give a better match in most cases, a score
based on a combination of the approximation and detail coef-
ficients should be investigated. For example, 75% of the score
could be found from the approximation coefficients while the
other 25% could be found from the detail coefficients. More
work also needs to be done in signal normalization to create a
speaker independent system.
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