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Abstract. Brain-computer interfaces (BCI) are a combination of com-
puter hardware and software that allow users to control artificial devices
using only their brain’s naturally-occurring electrical signals. BCI have a
wide range of potential applications, from simple entertainment to grant-
ing autonomy and the ability to communicate to the severely disabled.
BCI are still in early stages of development and researchers have many
challenges to overcome before a consumer-friendly BCI device becomes
a reality. This work gives an overview of the field of BCI and discusses
filtering applications.

1 Introduction

Brain-computer interfaces (BCI) provide a method of interaction and communi-
cation that circumvent the “brain’s normal output pathways” [A1], by detecting
and interpreting electrical signals produced by brain activity, and translating
them directly to input signals for artificial devices. Brain-computer interfaces
can use either “neural activity recorded from the surface [of the skull], such as
[electroencephalogram] EEG, or neural activity recorded from inside the skull or
brain” [D1]. These techniques are known as non-invasive and invasive, respec-
tively.

Most BCI research is devoted to medical purposes. BCI have great potential
to help patients who are severely paralyzed, either through injury or disease, but
still have intact cognitive functions. Sufferers of advanced Amyotrophic Lateral
Sclerosis (ALS) and Cerebral Palsy can become, what is known as, “locked in” to
their own bodies – developing the inability to move or speak, though possessing
a sound mind. Dr. Stephen Hawking of Cambridge University is, perhaps, the
world’s most well known person living with ALS. Dr. Hawking relies heavily on
computer technology in his day to day life, but his famous talking wheelchair
does not utilize a Brain-computer interface. Many areas of BCI research have
the common goal of allowing people, such as Dr. Hawking, to live a life without
dependencies on other human caregivers. Applications such as user mobility,
environment control, and communications are popular in the field of BCI.

Brain-computer interfaces have far-reaching potential outside of the medical
fields as well. Theoretically, BCI could monitor a person’s state of mind at work,
or while driving, and give feedback designed to reduce stress or prevent accidents.
BCI could, in fact, conceivably be applied to every application for which we use
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computers today - from business to education to entertainment - giving users
control of their high tech devices at the speed of thought.

2 Background

Researchers have been making great improvements in brain-computer interfaces,
but BCI systems are still incredibly complex, unwieldy systems that rarely
achieve the levels of performance that would be required of a consumer elec-
tronics device. There are many stages through which brain signals must pass
before they can be useful as input for artificial devices, and each of those stages
present researchers and developers with unique challenges.

Non-invasive techniques usually involve taking recordings from the scalp.
Electroencephalography (EEG) is a popular technique where features are either
“regulated by the BCI user... or elicited by visual, tactile, or auditory stim-
ulation” [D1]. EEG is relatively inexpensive to use, but the recorded signals
can be quite low in resolution, are limited to two dimensions, and are often
cluttered with noise from the environment. Other non-invasive techniques exist.
Functional magnetic resonance imaging (fMRI) measures the blood oxygen level
dependent response (BOLD) in active areas of the brain. “Compared to EEG,
fMRI allows spatial resolution in the range of millimeters and a more precise
allocation of neuronal activity. Additionally, activation in subcortical areas can
be detected” [D1]. “Near infrared spectroscopy [NIRS] offers a comparable [three
dimensional] spatial resolution” [D1] to that of fMRI. But unlike fMRI, NIRS is
portable and less expensive.

Invasive methods require surgery and pose serious risk to the patient [D1].
Once recorded, brain signals must usually pass through a filtering process,

before they can be fed as input to interpretation software. This is especially
true of noisy EEG data. Many things can reduce the quality of a recorded EEG
signal. Even something as seemingly innocuous as a subject blinking can create
erroneous data and must be filtered out. In a real-time BCI system, a user’s brain
activity has to be quickly interpreted and looped back to give the user feedback
as quickly as possible. In such cases, the signal processing and interpretation
software must be extremely fast and efficient.

3 Experiment

Our experiment was to read the raw data, and filter it like the BCI equipment
does. The programs were written using MATLAB. The key advantage is that we
have much more control over the filtering operation, and can always go back to
the original data if needed.

We implemented a low-pass filter, with a 45 Hz cut-off and Hanning win-
dow. The frequencies of interest from the BCI devices are the low ones on the
frequency scale, including Alpha waves (8-13 Hz), Beta waves (13-30 Hz), and
Theta waves (4-8 Hz) (Thanks to Mr. Toby Amoss for providing this informa-
tion). The low-pass filter allows us to retain these frequencies of interest, while
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dramatically reducing all frequencies above the 45 Hz cut-off. This cut-off value
is somewhat arbitrary in that it must be greater than 30 Hz and less than 60
Hz (discussed below). The Hanning window is a standard windowing function,
used to reduce the effects in the frequency domain of suddenly reading samples
and later abruptly stopping. The window function smoothes the transitions by
scaling the initial and final samples. There are many windowing functions to
choose from, but this choice is not a critical one for this application.

MATLAB has filtering operations in the signal processing toolbox, allowing
the user to obtain filter coefficients after specifying the cut-off and window to
use. Our code instead uses our own function to generate filter coefficients, a
modified version of the code found in chapter 10 of Digital Signal Processing
using MATLAB and Wavelets [W1].

We perform the fast Fourier Transform on the raw data and the both sets of
filtered data (the first done by the BCI equipment, and the second set generated
by our program). Figure 1 (left) shows a snapshot of both sets of filtered data,
plotted together, along with the unfiltered data. This is one second’s worth of
data from channel 3, a signal chosen to be representative of the other channels.
We see that the filtered sets of data correspond well to each other. In fact,
when we compare our filtered data to the original (raw) data (Fig. 1, left), we
see that the frequencies of interest are more faithfully reproduced. This figure
has the DC component (0 Hz) removed, to make the other frequency content
stand out. The top plot shows our filtered data, the middle plot shows it filtered
by the BCI equipment, and the bottom plot shows the frequencies in the raw
data. Figure 1 (right) shows a plot of the differences in the frequency content,
indicating that the differences between our filtered data and the raw data is
and the data that the BCI-equipment filtered is better. In fact, the accumulated
difference in magnitude for our data (from 1 to 30 Hz) is only 14.57, compared
with 45.93 for the BCI-equipment’s filtered data.
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Fig. 1. Frequency domain comparisons of our filtering versus the BCI equipment and
unfiltered data (left), and the frequency differences (right).
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Since our filtering more faithfully matches the original (raw) data for the
frequencies of interest, we argue here that our method is better.

4 Conclusions

Once a set of EEG signals has undergone a noise filtering process, it remains
to be interpreted. Event related potentials (EP), such as the P300, are popular
subjects of investigation in EEG interpretation research. However, EP are usually
binary “electro-physiological phenomena” [M1]. giving only an on/off or yes/no
distinction.

The ultimate goal of brain-computer interfaces is to give users an easy, re-
liable way to translate their thoughts directly into interactions with the world.
This implies some sort of portable, consumer-friendly device that is to be used
by people with very little specialized training. But many challenges remain, such
as low transfer rate, errors, non-portability of the equipment, and interference
from other sources such as emotions and interactions with people [M2].

According to a poster presented by R. Toby Amoss on the project, the ap-
proximate setup costs of his lab was $12,000 [A2]. Setting up a BCI lab may
cost in the range of $50,000-$150,000 [C1] according to one vendor’s pricelist.
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