
Orthogonal Wavelet Coefficient Precision and Fixed
Point Representation

Michael Weeks and Qin Wang
Department of Computer Science, Georgia State University

Abstract: The Discrete Wavelet Transform (DWT) is an important transform with many
signal processing applications, most notably, compression. Many architectures
have been proposed to perform DWT, but few address the precision of the
coefficients necessary to ensure perfect reconstruction. The goal of this work is
to experimentally determine the precision of the filter coefficients (for an
orthogonal wavelet) needed to compute the 2-D DWT without introducing round-
off error via the filter.

Key words: wavelet transform, fixed-point precision

1. INTRODUCTION

Wavelet analysis applies to many different applications, such as
digital communications, biomedical signal processing, medical imaging,
matrix computation, digital signal compression, and video-conferencing
[1][2]. Wavelets can be used to represent data in a way that reduces
redundancy within the signal. Therefore, it can be compressed and stored
in less space after the transform.

The Discrete Wavelet Transform (DWT) is a basis transformation
which is discrete in time and scale. Though the DWT produces real
(floating-point) values, it uses integer time and scale values. Often, a
design uses fixed-point format for data values, since fixed-point systems
are easy to implement. Fixed-point data values can be thought of as
rational numbers, and by using rational numbers for filter coefficients,
we are technically approximating the DWT. However, one requirement
in this work is that perfect reconstruction of 2-D images is achieved
experimentally. The focus is to determine the amount of precision
needed if fixed-point arithmetic is used to compute the transform.

The next section covers the DWT background. The experiment
follows in section 3, and the final section presents results and
conclusions.

1

2

2. DWT BACKGROUND

The goal of any transform is to turn the information of a signal into
coefficients that can be manipulated, stored, transmitted and finally
used to reconstruct the signal. In the case of lossy compression, a
reconstructed signal that is a close approximation to the original is
desired. By squeezing and stretching wavelets, the wavelet transform
can adapt to catch the high frequency and low frequency components
through a process called multiresolution. Let w(t) represent orthogonal
wavelets. Instead of shifting along time and stretching in a continuous
scale (as in the continuous wavelet transform), w(t) moves discretely
in time and shrinks by half for each scale. Hence, wjk(t) = w(2j t - k), j
and k representing scale and time respectively, and the signal function
f(t) can be decomposed into [1],

 f(t) = ∑ bjkwjk(t),
 where bjk = ∫ f(t) wjk(t) dt

This is the Discrete Wavelet Transformation (DWT).

The relationship between filter coefficients and wavelets function is [7]:

φ(t) = 2 ∑ h(k) φ(2t - k),
where φ(t) is called the scaling function

w(t) = 2 ∑ d(k) φ(2t - k),
where w(t) is the wavelet function

Therefore, if we have filter coefficients, the scaling and

corresponding wavelet functions can be determined, and vice-versa.
Figure 1 shows a 2-Dimensional DWT structure for 1 octave. The

first filter bank transforms the signal horizontally into an average signal
(from a low-pass filter, H0) and a detail signal (from a high-pass filter,
H1). A pair of filters operate on the data horizontally, then vertically.
This specifies 1 octave, also called a level of resolution. Downsampling,
or discarding a filter's even-numbered output values, occurs after each
filtering operation. After transmission, an inverse up-sampling operation
inserts zeros back in the even-numbered positions, and the signals go
into reconstructing filter banks, with another low (F0) and high pass filter
(F1). Finally, the two channel signals are combined together for the
synthesis.

 3

The DWT can be computed quickly by the fast pyramid algorithm [5].
The algorithm gets its efficiency through downsampling, giving it a
complexity of O(N) [6]. Since a DWT filter only keeps half of the filter
outputs, then only half need to be computed [8]. The scaling filters
generate N/2j values (j is the octave number), but these are only used
internally as they are inputs to the next pair of filters. The exception is
the last octave. The maximum number of octaves is based on the input
length, J = log2(N), however, practical applications limit the number of
octaves, typically to J=3.

 The wavelet transform stores the details (wavelet coefficients), and
puts the average signal (scaling coefficients) back through a filter bank,
to generate the next octave's coefficients. This process, called multi-
resolution, can be repeated up to log(N) times.

2.1 Fixed Point Versus Floating Point

When designing a wavelet transform processor, one question is
how to treat the data and filter coefficient values, as fixed-point
values, or floating point? Fixed point has the advantages of being
easier to implement, requires less silicon area, and makes
multiplications faster to perform. Floating point allows a greater range
of numbers, though floating point numbers require 32 or 64 bits.
Fixed-point numbers can be 8 to 32 bits (or more), possibly saving
space in the multiplier.

The wavelet transform has compact support, and the coefficients
have small sizes that do not take advantage of the floating-point
number's wide range [9]. Also, using fixed-point numbers allows for a
simpler design. In other words, the extra hardware that floating point
requires is wasted on the DWT. A standard design for integer
multiplications is the high speed Booth multiplier, as used by [9], [10].
DWT architectures of [10-12], are implemented with fixed-point
computations. In the horizontal and vertical filters, decimal numbers
including some bits for the fractional part represent the values. When
the results leave the filters, the values are truncated to fixed format.

For multiresolution, the DWT coefficient's range will grow [10].
The increase is upper-bounded by approximately 2. An extra bit of
precision for each transform octave or dimension will be needed. For a
1-D architecture, [10] also notes that 12 bits of precision are enough.
In [13], it is noted that wavelet transformed data is naturally floating
point, but they round it to the nearest integer values, to minimize data
loss. The chip in [14] has 16x16 size multipliers, but keep 16 bits of
the result, which is chosen by software. Therefore, fixed-point

4

numbers with an assumed radix have been shown to work for
computing the DWT.

2.2 Precision

When a computer represents wavelet filter coefficients, or any
irrational number, it naturally imposes a certain precision on these
quantities, introducing round-off error. With programs such as Matlab,
it is easy to verify that one can achieve perfect reconstruction.
Therefore, the question we are attempting to answer is not whether or
not the filter values can be represented with less precision than actual
floating point values, but what the cut-off is for perfect reconstruction
when using rational numbers.

Nine grey-scale images were used in this study, including Figure 2.
These input values are 8 bits wide. If the filter coefficients are also 8
bits wide, then the arithmetic result for 1 filtering operation has 16 bits
(from an 8 bit x 8 bit multiplication). If all multiplication bits are kept
every time, then the size of the coefficients will grow by a factor of 3
just for 1 octave of the 2-D DWT. Therefore, some bits are truncated.
Most previous work that address this use either 8 or 16 bits in their 1-
D designs, e.g. [14]. Analysis on the word size for the 1-D DWT is
shown in [10], and concludes that 32 bits is too much for the 1-D case.
This paper explores precision needed for the 2-D DWT,
experimentally, for the filter coefficients themselves.

2.3 Previous Results

The precision needed to store the transformed coefficients was
found experimentally in [17] to be 13, 14, and 15 bits for 1, 2, and 3
octaves, respectively, for the Daubechies 4 (or 8) coefficient wavelet.
The format includes 1 sign bit, 2 bits after the radix point, and the rest
are used for the integer part.

The coefficients of this wavelet are orthogonal, meaning that the
same coefficients (with reversed order and sign) are used for both the
forward and inverse transform.

Similar ideas have been explored, such as using the Integer
Wavelet Transform (IWT) for lossy/lossless compression [19]. In the
IWT, filter outputs are rounded to integer values. The paper in [19]
presented a model for quality loss. As [17] showed, at least 2 bits past
the radix point are required. The approach we took in [17] was to
represent the outputs as rational numbers. Since the coefficients are
represented in binary, the denominator is always a power of 2. That is,

 5

multiplying by 2k, followed by truncation, followed by division by 2k
(or an equivalent k-bit shift to the right) has a similar effect as the
IWT.

3. PRECISION EXPERIMENT

To experimentally find how much precision is necessary, 2-D images
were transformed, with integer multiplications followed by bit-shifting.
The transform uses 2-D convolution to achieve the functionality of DWT
in Matlab (and double-checked against Matlab's built in 2-D DWT
function). Within the procedure, a bit-shift scheme has been adopted to
give fixed-point operation on the image data. Three different data
processing methods are applied on the image data. The first one uses
fixed-point operation on both DWT and IDWT, and the second applies
fixed-point DWT on the input image but uses floating-point IDWT in the
reconstruction. The last method considers the fact that during the fixed-
point operation the data are usually truncated due to limited precision,
hence in order to obtain more chance to have a perfect reconstruction, it
uses the ceiling function rather than rounding in the integer value
conversion.

The Daubechies wavelet with 4 coefficients are used in this study.
First, the image was decomposed into 1 octave of resolution by fixed-
point DWT, then we tried 3 different methods of reconstruction to get
back the original image. The reconstructed image is compared with the
original in terms of pixel magnitude to find out whether perfect
reconstruction is achieved. Three 3 variant bit precisions: 12, 13 and 14-
bits, are experimented on the set of test images. The tables below give
the resulting error between the reconstructed image and the original one,
depending upon which reconstruction method is used. The error value in
the table is computed by finding the absolute value of the difference for
each pixel, and summing them up over the whole image. From the error
values for each method, we can tell how many bits are needed for the
perfect reconstruction.

4. RESULTS AND CONCLUSION

Table 1 indicates how the precision affects the transform, namely that
for perfect reconstruction, we need at least 14 bits for 1 octave of
decomposition if both DWT and IDWT are fixed-point operation, while

6

13 bits are enough to come up with the same result if only the transform
DWT is fixed-point. In comparison of the reconstructed image and the
original one, an interesting thing shows up. No matter what method or bit
precision is adopted, if there is any error in existence, the error for each
pixel is only 1. This is because the cause of the error is truncation in the
fixed-point operation, so it is anticipated that in the integer value
conversion on the reconstructed image, the ceiling function should
produce a better restored image than the round off function does. The
result from applying the ceiling function in the last two columns in the
table firmly demonstrates this. The error induced by using 12-bits of
precision with the ceiling operator is much smaller than using the other
two methods. Only 13 bits are necessary for a perfect reconstruction
when adopting fixed-point operation for both DWT and IDWT, which is
a 1 bit improvement compared to the results of the round-off operation.

The figures of 'dog on porch' image of Figure 2 show how the
different methods can affect the reconstruction in the fixed-point
operation. The upper-left is the original image, the upper-right is the
pixel-error from 12-bit dual fixed-point operation, the lower-left is for
12-bit fixed-point DWT/floating-point IDWT, and the error from 12-bit
dual fixed-operation with ceiling function is shown in the lower-right.
The difference is represented by a black spot at each pixel, the result
shows whatever method is in use the magnitude of the difference is only
1. Comparing the difference image to the original, we notice that the area
where the error stands out is where the brighter spot happens to be. This
is because higher magnitude pixel values are distorted more than lower
magnitude ones, i.e. the dark pixels.

This paper shows that the amount of precision of the filter coefficients
(that is, the number of bits to use) is an important parameter behind the
design of a system involving the wavelet transform. For a 2-D DWT, the
number of bits to use depends upon the method of data processing in
reconstruction. For the test images used in this study, 14 bits of precision
allows the DWT to be computed without affecting the reconstruction,
while 13 bits can be sufficient for using float-point IDWT reconstruction
or by ceiling in integer conversion. Since the integer values on pixels for
an image are usually distributed among the range of 0 to 255, if these
values are all able to be restored perfectly after the reconstruction with
certain precision, it is confident to say the same precision will work for
any grey-scale images.

 7

Figure 1. The 2-Dimensional DWT

 fixed-point
DWT/IDWT

floating-point
IDWT

Ceiling to Integer

Image name size 12 bit 13 bit 14 bit 12 bit 13/14 bit 12 bit 13/14 bit
airplane 256x256 16119 7487 0 15594 0 11188 0

dog 256x256 8103 532 0 5322 0 917 0
jelly_beans 256x256 14572 0 0 13290 0 7344 0

moon_surface 256x256 14079 54 0 8875 0 132 0
elaine 512x512 49330 4995 0 36837 0 10052 0
house 512x512 57953 7099 0 51267 0 25274 0
lena 512x512 45985 2766 0 34905 0 6948 0
tank 512x512 56450 0 0 46524 0 3 0

Table 1 – error values between the reconstructed and the original image for 3 different
methods of reconstruction with 3 variant bit precisions

8

Figure 2 – Original image ‘dog256x256.pgm’ and 3 difference images from its
corresponding reconstruction method. The up-left is original image, up-right is the
pixel-error from 12-bit dual fixed-point operation, down-left is for 12-bit fixed-point
DWT/float-point IDWT, and the error from 12-bit dual fixed-operation with ceiling
function shown in the down-right.

 9

REFERENCES
[1] Andrew Bruce, David Donoho, and Hong-Ye Gao, "Wavelet Analysis," IEEE

Spectrum, Oct. 1996, pages 26-35.

[2] Mohan Vishwanath and Chaitali Chakrabarti, "A VLSI Architecture for Real-Time

Hierarchical Encoding/Decoding of Video using the Wavelet Transform," IEEE Int. Conf.
Acoustics, Speech and Signal Processing (ICASSP '94), Adelaide, Australia, Volume 2, April
19-22, 1994, pages 401-404.

[3] Keshab K. Parhi and Takao Nishitani, "VLSI Architectures for Discrete Wavelet

Transforms," IEEE Trans. VLSI Systems, Vol. 1, No. 2, 1993, pages 191-202.

[4] Tinku Acharya, Po-Yueh Chen, and Hamid Jafarkhani, "A Pipelined Architecture for

Adaptive Image Compression using DWT and Spectral Classification," Proc. of the Thirty-
First Annual Conf. on Info. Sciences and Systems, Volume II, Baltimore, MD, March 19-21,
1997, pages 1-17.

[5] Stephane Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet

Representation," IEEE Patt. Anal. & Mach. Intel., Vol. 11, No. 7, 1989, pages 674-693.

[6] M. Vishwanath, R. M. Owens, and M. J. Irwin, "Discrete Wavelet Transforms in

VLSI," Proc. of the Int. Conf. on Application Specific Array Processors, Berkeley, CA,
August 1-2, 1992, pages 218-229.

[7] Gilbert Strang and Truong Nguyen, Wavelets and Filter Banks, Wellesley, MA,

Wellesley-Cambridge Press, 1996.

[8] G. Knowles, "VLSI Architecture for the Discrete Wavelet Transform," Electronics

Letters, Vol. 26, No. 15, 1990, pages 1184-1185.

[9] Charles C. Chang, Jyh-Charn Liu, and Andrew K. Chan, "On the Architectural

Support for Fast Wavelet Transform," SPIE Wavelet Applications IV, Vol. 3078, Orlando,
Florida, April 21-25, 1997, pages 700-707.

[10] Aleksander Grzeszczak, Mrinal K. Mandal, Sethuraman Panchanathan, and Tet

Yeap, "VLSI Implementation of Discrete Wavelet Transform," IEEE Trans. VLSI Systems,
Vol. 4, No. 4, 1996, pages 421-433.

[11] Jimmy Limqueco and Magdy Bayoumi, "A 2-D DWT Architecture," Proc. 39th

Midwest Symposium Circuits & Systems, Ames, Iowa, August 18-21, 1996, pages 1239-1242.

10

[12] A. S. Lewis and G. Knowles, "VLSI Architecture for 2-D Daubechies Wavelet

Transform without Multipliers," Electronics Letters, Vol. 27, No. 2, 1991, pages 171-173.

[13] Jun Wang and H. K. Huang, "Three-dimensional Medical Image Compression using

a Wavelet Transform with Parallel Computing," SPIE Imaging Physics, San Diego, Vol.
2431, March 26-April 2, 1995, pages 16-26.

[14] Wavelet Transform Processor Chip User's Guide, Aware, Inc., Bedford, MA, 1994.

[15] Michael Weeks, Jimmy Limqueco, and Magdy Bayoumi, "On Block Architectures

for Discrete Wavelet Transform," 32nd Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, November 1-4, 1998.

[16] Michael Weeks and Magdy Bayoumi, "3-D Discrete Wavelet Transform

Architectures," IEEE Int. Symp. Circuits & Systems (ISCAS '98), Monterey, CA, May 31 -
June 3, 1998.

[17] Michael Weeks, "Precision for 2-D Discrete Wavelet Transform Processors," 2000

IEEE Workshop on Signal Processing Systems (SiPS), Lafayette, Louisiana, October 11-13,
2000, pages 80-89.

	INTRODUCTION
	DWT BACKGROUND
	Fixed Point Versus Floating Point
	Precision
	Previous Results

	PRECISION EXPERIMENT
	RESULTS AND CONCLUSION

